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ABSTRACT

This thesis deals with improving the miss distance of a rnissile, with imaging seeker(s),

by utilizing dynamic image- processhig. In an encounter with a missile, a target tries to

avoid thd missile by performing an evasive maneuver when the missile is at a relative dis-

tance which maxidmizes the miss distance. Dynamic image, process-ing permits us to identify

the evasive maneuver of the target by estimiatin'g its acceleration in magnitude and dire'>

dion. This thesis studies methods of utilizing this additional information about the target's

behavior in order to improve the miss~ie's performance. First the proportional. navigation

guidance law is explored in. order to verify its advanitages and weaknesses. Then, methods

of obtaining the time dependent 3-D) roverpent of a tcu-get from its image pLane feature

point correspondences are derived. The 3 -D components of the target's acceleration are ob-

tained by using a Kalmnan filter. Missilets with twc cameras, one camera and one seeker (ra-

dox or IR), and only one eaanera are considered. Methods to get stereo vision by using the

one camera plus one oseeker setup and the single camera setup are proposed. Advanced

guidtance laws, namely advanced proportional navigation and optimal guidance are de-

rived, for a 3-D environment. A three dimensional simulation program is developed using

zl.Asýcdcal proportional navigatlic-r, advanced proportional navigation, and optimal guidance.

The eugagement is simulated using, state variable design and the performance of the guid-

aace taw:ý is co~mpared.AcekFr
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I. INTRODUCTION

The U.S, as a result of the highly effective kamikaze attacks during World War II on

U.S vessels, initiated the development of the first tactical missile (Lark guided missile).

Since that time, proportional navigation guidance has been used in virtually all the world's

endoatmospheric tactical radar, infrared(IR), and television(TV) guided missiles.

Proportional guidance works well not only for predictable targets, but also for highly

responsive ones (i.e. targets executing evasive maneuvers). The proportional navigation

guidance technology currently in use appears to be adequate, if the effective time constant

of the guidance system is short in comparison with the flight time and, if the missile has

considerable acceleration advantage over the target. The popularity of this interceptor

guidance law is the result of its simplicity of implementation, and effectiveness. Although

proportional navigation was apparently known by the Germans during World War II, no

applications of it were reported. In the US, this guidance law was studied under the-

auspicious of the U.S Navy. Proportional navigation was originally conceived from

physical reasoning. The mathematical derivation of the "optimatility" of proportional

navigation came more than 20 years later.

This research develops a three dimensional missile/target simulation using three

techniques of interceptor guidance, namiely classical proportional navigation, augmented

proportional navigation and optimal guidance. The primary research goal is to improve the

miss distance of a missile with imaging seeker(s) by utilizing dynamic image processing.

The existent dynamic image processing algorithms can be used to estimate. motion

parameters of the target. This additional information, about the target behavior, vvill be

included in the proportional navigation homing loop in order to increase the missile

percentage of kill by improving the final miss distance. Information about the target motion

is especially important in the final phase of the engagement, given that an evasive

maneuver performed by the target creates appreciable miss distance that may preclude a

target kill. In an encounter with a missile, a target tries to avoid the missile by performing

QII



a evasive maneuver when the missile is at a relative distance that maximizes the miss

distance. A simulation of the adjoint model of the linearized homing loop permits us to

obtain miss distance projections as a function of flight time or, if preferable, as a function

of the time to go. The target can induce the most miss distance by executing an evasive

maneuver at a short time to go. More precisely, the optimal evasion from the target "point

of view" would be a series of maneuvers at the times of flight that, by superposition,

produce the most miss distance. Estimating the target maneuver and incorporating this

information into the guidance control input is perhaps the difference between success and

failure.

Chapter II introduces the idea of proportional navigation and how the actual guidance

law is developed. Chapter 1HI deals with estimating the target motion parameters by using

two perspective views. In Chapter IV, the augmented proportional navigation and optimal

guidance will be derived. Also in this chapter, a tridimensional missile/target simulation is

developed using classical proportional navigation. Subsequently, the target's estimated

motion parameters will be incorporated in the tridimensional engagement by using

augmented proportional guidance and optimal guidance. Chapter V consists of actual

simulation results. The different control laws will be tested and compared by producing

miss distance projections for different evasive maneuvers. Finally, conclusions and

recommendations follow in Chapter VI. All computer simulations are developed using

Matrix Laboratory(MATLAB).
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I1. FUNDAMENTALS OF TACTICAL MISSILE GUIDANCE

A. GENERAL

Proportional navigation guidance (PROPNAV) commands the missile to turn at a rate

proportional to both the angular velocity of the line of sight (LOS) and the closing velocity.

The constant of proportionality is a unitless designer chosen gain (usually in the range 3-5)

known as the effective navigation ratio/constant. Mathematically, the guidance law can be

stated as

urm = NVc., (Eq 2.1)

where Urn is the acceleration command which is perpendicular to the instantaneous LOS. N

is the effective navigation constant V, is the closing velocity along the LOS, and k is the

LOS angle (in rad). The overdot indicates the time derivative.

If the navigation ratio is greater than 1, the missile will be turning faster than the LOS,

and thus the missile will build up a lead angle with respect to the line of sight. For a constant

velocity missile and target the generation of this lead angle can put the missile on a collision

course with the target (zero angular velocity of the line of sight). If N = 1 then the missile

is turning at the same rate as the LOS, or simply homing on the target. If N < 1, then the

missile will be turning slower than the LOS, thus continually failing behind the target,

making an intercept impossible. In order to completely understand th-,e. physics of

proportional navigation guidance it is necessary to analyze pursuit and constant bearing

guidance.

B. PURSUIT GUIDANCE

For pursuit guidance, the missile velocity vector is always directed toward the target

as illustrated by Figure 2.1. The missile is then constantly heading along the line of sight

from the missile to the target and its path describes a pursuit path. Given that the rate of turn

of the missile is always equal to the rate of turn of the LOS, "pure" pursuit (without leading

angle) paths are highly curved. This requires the missile to use significant acceleration.



Since the signal processing is limited to continuously locating the target and changing the

missile flight path angle, the on-board avionics are relatively simple. As will be

demonstrated later, this kind of classical guidance law is a special case of PROPNAV when

the effective navigation ratio is equal to 1.

Target 1 2 3 4

-0 missile heading angle

Om=, XLOS

M;sile hm = Inertial reference

Figure 2.1 Pursuit Trajectory

Figure 2.2 shows tdhn geometry of the pursuit guidance law. Vm and Vt are respectively

the mi..ile and target velocities, 0mn and 0t are respectively the missile and target flight

path angles, ak is the difference between tht LOS angle and the target flight path angle, and
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r is the instantaneous separation between missile and target. Inertial and missile translating

coordinate systems are also shown in the figure.

The velocity of the target with respect to the missile is given by:

0-- Vt -- ; (Eq 2.2)

= r + r66o. (Eq 2.3)

I V,

Target

y r

amI = x a
Mi o sTranslating coordinate systemMissilei ~Y

, 0- , ' Inertial coordinate system

Figure 2.2 Pursuit Guidance Geometry

Writing the velocity of the target and missile in terms of the polar unit base vectors er and

ee, we get:
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=t = VICOSCAtr - Vtsincteo, (Eq 2.4)

V, - vmr. (Eq 2.5)

Equating equations 2.2 and 2.3 and uring equations 2.4 and 2.5, we obtain:

t = Vtcosaxrt-Vm; (Eq 2.6)

rO = -V,,, sinaxr (Eq 2.7)

From Figure 2.2, we see that:

emO =% + Ot. (Eq 2.8)

Considering a non responsive target:

Em = 6t1 (Eq 29)

The missile acceleration Ui is obtained by differentiating equation 2.5:

UA = Vmr+VmO,6,4, (Eq2.10)

given that from analytical mechanics:

d~r dO_ • = 00(, ( 2.11)

Assuming constant speed (magnitude of the velocity vector), the acceleration command

will be the normal component of the acceleration which will be designated urn:

UrM = VmOm = V.. = Vx.t, (Eq 2.12)

where 6ct is a time function.

C. CONSTANT BEARING GUIDANCE

The accelerations required by the pursuit guidance law can be reduced by aiming the

missile ah-ead of the target by using a lead angle. In this case the missile traverses a straight

line to a collision with a constant speed non maneuvering target, as shown in Figure 2.3.

The missile converges on the target by using a constant LOS angle (ý, = constant). Since the

rate of change of the LOS angle is zero throughout the flight, the lateral accelerations are

6



zero. If the target maneuvers evasively, by changing its velocity vector in direction and/or

in magnitude, a new collision course must be computed and tht: missile flight path altered

accordingly. The constant bearing geom,.ry is shown in Figure 2.4.

We wish to find the missile control input necessary to responde to prescribed target

accelerations. The ielative velocity is given by:

=Vt- Vm = Itr + rXýeo. (Eq 2.13)

The target and missile absolute velocities are:

= Vtcoscitr -Vtsinatre; (Eq 2.14)

Vm = Vmcosc e-r - V sinoceo. (Eq 2.15)

Subtracting equation 2.14 from equation 2.15 and equating the result to 2.13, we find that:

* = Vtcosat-Vmcosam; (Eq 2.16)

rX = -Vtsinit 1 +Vmsin(ixm. (Eq 2.17)

The requirements for a constant bearing guidance are:

X = 0; (Eq 2.18)

f < 0. (Eq 2.19)

Using equations 2,17 and 2,18, we get:

sin cc = - Vm (Eq 2.20)

From equations 2.16 and 2.19:

cos at
Cos M > --V-, Vt" (Eq 2.21)

/ - I III7



Target 1 2 3

MissilInertial refereunce

Figure 2.3 Constant Bearing Guidance Trajectory

We may use equation 2.20 to obtain a expression for cos a, by squaring the equation and

using the fundamental trigonometric entity. Doing this, we get:

COSX [ / 2

M V2-vIv i

/ / o8



i 

V,

Target
ee

V.

M issil , T ranslating coordin ate system-

-

M issile 
x 

m
y

' .' .' - * )Inertial coordinate system
x

Figure 2.4 Constant Bearing Geometry

Substituting this expression into equation 2.21, we obtain:

COsam>M - -; + (COS am)2 (Eq 2.23)L V, v.,

This expression is satisfied if:
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Vi - I < 0 =ý Vm > VI* (Eq 2.24)

Thus, for this guidance law to be effective the missile must have speed advantage relative

to the target.

"The missile and target accelerations can he computed from Figure 2.5, which expands

the acceleration in terms of tangential and normal components. The velocity vector o- a
body (missile or target) is described by:

V = vi, (!Sq 2.25)

where t represents the tangential unit vector to the trajectories represented by the dashed

lines in the figure. The figure shows the response of the missile to a evasive target. We are

interested in computing the relationship between the missile control input and the target

maneuver.

V,

01

Target

r

V.

-Missile

Figure 2.5 Constant Bearing Normal Acceleration
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The acceleration of the body is given by:

- dt - d(V) = t" + V-dt (Eq 2.26)

For small values of Ax it approaches the magnitude of Ai and the direction of Ai becomes

perpendicular to the direction of t. It follows that the derivative - - is of magnitude 1 andd*

dtperpendicular to "i. Then this derivative is the unit normal vector h. The time derivative dt

is found by using the chain rule, as follows:

-n -=4qt =AO. (Eq 2.27)

di d di

Assuming constant speed, the missile and target accelerations are always in the direction of

the respective unit normal components and can be written as:

Urn ,lrnVOM; (Eq 2.28)

t= htVtOt (Eq 2.29)

since,

O= %,, +, (Eq 2.30)

and given that X = 0,

Om = &mI (Eq 2.31)

uM = VM6LnM' (Eq 2.32)

The variable, uni is the missile acceleration magnitude. Differentiating equation 2.20, we

find &M and then ur in terms of the target evasive acceleration:

S(Cos at) W
am M(t)= v,--c ,W Vj a (t), (Eq 2.33)

where the time factor is included. Additionally,

11



Q•t) )6c, 0t =- O, (t 0 Vt (Eq 2.34)

where ut (t) is the target acceleration magnitude. Hence:

U,,, W Cost u, (W. (Eq 2.35)

From this last equation and equation 2.20, we conclude that the LOS will maintain its

direction in space, keeping the missile on a collision course with the target provided that

the missile's and target's kinematics normal to the LOS behave likewise. Additionally,

from equation 2.21, the closing velocity (component of the relative velocity along the LOS)

must be positive. Constant bearing guidance requires the knowledge of the heading and

velocity of the target, the line of sight, and the velocity of the missile, which dictates a more

complex signal processing system than for pursuit guidance.

D. PROPORTIONAL NAVIGATION GUIDANCE

1. In Search Of The Proportional Navigation Concept

Pursuit guidance tries to continuously point the missile to the target, resulting a

highly curved path and very large accelerations. The guidance law is only interested in the

present position of the target; lacking information about the target kinematics. This lack of

information precludes the missile from building a lead angle, resulting in a somewhat

ineffective guidance law. Constant bearing guidance points the missile to the future

position of the target, resulting in a straight line collision path with a non maneuvering

target. Before pointing the missile, the guidance system needs to know the heading and
velocity of the target to compute the target's future position. So, this method is not

practical, especially when dealing with targets with evasive capabilities.

The advantage of proportional navigation is that it provides a practical method of

approximating a constant bearing course to a maneuvering target. PROPNAV tries to

emulate the constant bearing guidance command by using LOS rate information from an

on - board electromagnetic or electro - optic device.

12



A missile using constant bearing guidance only needs a control input when it is

necessary to change its hea(jiig at the begir ning of the flight and afterwards if the target

maneuvers. The form of this command signal was derived and is repeated here for

convenience:

1m = Vm&'mii. (Eq 2.36)

From the proportional navigation geometry in Figure 2.6:

am = cxm + 4. (Eq 2.37)

Taking its derivative:

6m = m + k. (Eq 2.38)

The acceleration of the missile (assuming constant speed) is:

am = VmOmh = Vm (am + X) fl,. (Eq 2.39)

Our goal is to emulate equation 2.36 by using a linear transformation between the LOS rate

A and the missile's angle rate &m. Set, for example:

X, = Nt-am. (Eq 2.40)

Equation 2.39 becomes:

I . N
Lrm n VmG(6m + 1 &am) f = Vm N--I amn. (Eq 2.41)

By letting N be large this equation approaches equation 2.36 for a constant bearing path

(collision course). We are interested in the relationship between the LOS rate and the flight

path angle rate. Using equations 2 38 and 2.40, we find that:

- + N ' ( l - l,+/k = NX; (Eq &4.-

Sam = NVmkii. (Eq 2.43)

Therefore, PROPNAV is a practical guidance law that emulates constant bearing guidance

"by issuing control commands that are proportional to the LOS rate.

13



Pursuit guidance is a particular case of proportional navigation when N =1

(compare equations 2.12 and 2.43). As we have seen, constant bearing guidance is obtained

by letting N be large (theoretically infinity). However, large gains in the amplifiers also

cause large amplifications of noise; therefore N is usually restricted to less than. 6.

proportional navigation paths are less curved than pursuit paths, but more curved than

constant bearing collisions. PROPNAV anticipates the future position of the target without

actually computing it. Due to this property this guidance law presents a higher degree of

responsiveness than other guidance laws.

2. Proportional Navigation And Zero Effort Miss

In Figure 2.6 the missile, with velocity magnitudeVm, is heading at an angle of

L + HE with respect to the line of sight. The angle L is known as the missile lead angle and

is the theoretically correct angle for the missile to be on a collision triangle, with the target.

If the missile is launched in a collision triangle with a non evasive target, no further

accelerations commands will be required to hit the target. The angle HE is known as the

heading error, and represents the initial deviation of the missile from the collision triangle.

In practice, the missile is usually not launched exactly in a collision triangle, since

the expected intercept point is not known precisely. The location of the intercept point can

only be approximated, because we do not know in advance what the target will do in the

future. In fact, that is why a guidance system is required. The point of closest approach of

the missile and target is known as the miss distance. Guidance system lags or subsystem

dynamics will cause miss distance. The simplest proportional navigation homing loop is

shown in Figure 2.7 where we have linearized the missile/target engagement by using the

small angles approximation (i.e. we assume that the flight-path angles and the Line of sight

angle are small in order to linearize the engagement geometry. Then, the cosine functions

are approximated by 1 and the sine and tangent functions by their arguments). In a

linearized analysis, the range equation is approximated by the following time varying

relationship:

14



r = V, (t- 0t) = Vctgo (Eq 2.44)

where VC is the closing velocity, tF is the total flight time, and tgo (time to go) is the time

until the end of the flight. As shown in [Ref. 1] the miss distance will always be zero in a

zero-lag proportional navigation homing loop. The PROPNAV guidance law used in the

homing loop of Figure 2.7, and also the most used in the literature, is not the one derived

in equation 2.43, but the following one:

im = NVcýhx (Eq 2.45)

where nX is the unit vector normal to the LOS. Then, the control input is issued

perpendicular to the instantaneous LOS. It can be easily demonstrated that this last

expression maintains the proportionality between the missile flight path angle and the

angular LOS rate. In [Ref. 2], Guelman contrasted "pure" PROPNAV (described by

equation 2.43, wherein command accelerations are normal to the missile velocity vector)

and "true" PROPNAV (described by equation 2.45, wherein command accelerations are

normal to the line of sight). He concluded that the later law would result in intercept only

if the initial conditions were within a well-defined subset of the parameter space. In the

homing loop of Figure 2.7, the seeker provides the LOS rate by taking the derivative of the

geometric LOS angle. 'Ibe noise filter processes the noisy LOS rate measurements to

provide an estimate of the LOS rate. The guidance command is generated using the "true"

PROPNAV guidance law. The guidance system must cause the missile to maneuver, by

using moving control surfaces. The seeker and the guidance system dynamics are described

by differential equations.

The presence of delays in the homing loop creates miss distance. In the presence

of guidance system dynamics, the heading error (HE) and target maneuver (target evasive

acceleration) are the two sources of miss distance. The PROPNAV guidance law can be

expressed in terms of the zero effort miss. The zero effort miss is not only useful in

explaining PROPNAV but is also useful in deriving more advanced missile control laws.

15
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Figure 2.6 Proportional Navigation Two Dimensional Engagement

The zero effort miss is the distance the missile would miss the target if the target

continued along its present course and the missile, ,nade no further corrective maneuvers.

Using Figure 2.6:

ZEMx = rx + VXtg 0 , (Eq 2.46)

ZEMY = ry + Vy tgo; (Eq 2.47)

where ZEM represents the zero effort miss. r is the missile/target relative distance, and v is

the missile/target relative speed. The subscript (x or y) represent the projection of the

respective quantity over that coordinate axis.

16



Physics Noise
aSeeker Filter

afl,

Guidance Navigation
System law

Figure 2.7 Zero - lag Proportional Navigation Homing Loop
(Linearized Engagement)

"l he ZEM perpendicular to the LOS, is given by:

ZEMPLOS = - ZEMxsinX+ZEMy Cos.. (Eq 2.48)

Using equations 2.46 through 2.48, we obtain:

tg, (rxVy - rvV.,)
ZEMPLOS -= (Eq 2.49)I"

The LOS is:

(r~
S-atan r ' (Eq 2.50)

(rx)

taking its derivative, we obtain:

rV xYy - r yVx
2 (Eq 2.51)
F2
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Comparing equations 2.49 and 2.5 1, the LOS rate may be expressed in terms of the

component of the zero effort miss normal to the LOS:

ZEMPLOS ZEMPLOS.rtg° cl~g°(Eq 2.52)
rtgo V t920

where r = Vctgo, Then the PROPNAV guidance command mignitude can tt expressed in

terms of the ZEM perpendicular to the LOS:

N ZEMPLOS (Eq 2.53)
m 2

tgo

Thus, we conclude that the PROPNAV acceleration command that is pec Lendicular to the

LOS is not only proportional to the LOS rate and closing velocity but io also proporiornal

to the zero effoi t miss and inversely proportional to the square of time to go. The efficlienty

of PROPNAV guidance is a direct consequence of this dynamic property. This is, of course,

a very powerful concept.
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Ill. DYNAMIC IMAGE PROCESSING

A. GENERAL

A missile that uses a TV camera and a seeker (radar or IR), or instead, two TV cameras

is considered. A setup with only one TV camera is also studied. The seeker and the camera,

or the two cameras, can be located on the missile's nose separated by a transversal distance

d. The seeker plus the single camera setup, permits the missile to emulate the stereo vision

of the two cameras setup. It has the additional advantage of tracking the target at the early

stages of the engagement using solely the seeker's LOS angle information. This system

permits us to compute the 3-D target motion by using a two perspective views motion

algorithm and the target's spatial direction and range provided by the seeker. The two

cameras setup permits us to use image plane locations in two views, corresponding to a

single object point at times t, and t2 , to determine the 3-D object (target) locations k0 (ti)

and X, (t2) . The one camera setup also permits us to determine the motion of the target, as

a function of time. This is done by using a two perspective views motion algorithm and

guessing the target's physical dimensions to estimate its absolute depth. In this way, we

emulate binocular vision. The estimated 3-D motion of the target and the image sampling

time permit us to estimate the target velocity and acceleration components in a preselected

3-D rectangular coordinate system. The acceleration information can subsequently be

injected into the control algorithms, which will be developed in the next chapter, to improve

the miss distance.

1. Scene (3-D) - Image (2-D) Geometric Considerations

Mathematically, we can express the transformation of object point locations (3-

ID) to image plane locations (2-D) by the following generally noninvertible geometric

transformation:

i = g( 0 (t) ... ). (Eq 3.1)
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The modeling of the imaging process, described by the above equation, relates object points

Xo (t) in the 3-D scene to image points -i (t) in the image plane. The function g depends

on the imaging geometry, lens model, and coordinate system choices.

The imaging model is derived by considering the pinhole camera model shown in

Figure 3. 1. The point XC lies over the camera's optical axis at a distancef from the image

plane. The figure shows two distinct coordinate systems, an image plane coordinate system

and a global coordinate system. Our first goal is: assuming the simplified camera model

shown in Figure 3.1, derive the transicrmation described by equation 3.1 where the object

point Xo (t) can be measured from either coordinate system.

z Xi = Yi Xc 0]

= Ldx dy d] • = Yo

Zg .g

Figure 3.1 Scene - Image Transformation
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The object/image relationship defined in equation 3.1 is defined by a transformation

matrix. Independent of the camera model, this transformation matrix is the product of two

matrices. The first matrix describes the object - image coordinates transformation, and is

derived by assuming that the 3-D object coordinates are measured relatively to the image

plane. However, if the object coordinates are measured relatively to the global coordinate

system, a second transformation matrix relating the two coordinate systems have to be

defined. This matrix is the composite of the relative rotation and translation between the

coordinate systems. It describes the coordinates transformation between the two coordinate

systems.

To identify the transfornmation defined by equation 3.1, the two matrices are

derived for the simplified camera model of Figure 3,1. Monocular vision (only one camera)

is incapable of determining absolute depth.. However, any imaged point is constrained to

correspond to an object point located anywhere on the 3-D line segment containing ki (t) ,.

Xs andX (t)

Assuming that the coordinate systems for both object and image points, are

coincident and centered in the image plane, the above colinear points are related by:

k (Xi (t) -c) = (XC-, (t)). (Eq 3.2)

Expe iding this equation yields:

k {O Yi zl- Oo Xo Yo Zo] T, (Eq 3.3)

where the superscript T is the transpose operator. The time index t has been dropped to

simplify the notation. Equation 3.3 yields:

(x"-f) x0k =- f - -- 1 (Eq 3.4)
Yf fo

Yi k - (f -xo) (Eq3.5)
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zi = - . (Eq 3.6)

The minus sign in the second expression of the two last equations, stands for the image

inversion originated by the back -projection model of Figure 3.1. The matrix representation

of the nonlinear equations 3.5 and 3.6 is:

o f 0 1
-= MkX = I OfOX foV (Eq 3.7)

L-1oof]_
The last eqution uses homogeneous coordinates (a technique also used to develop

computer graphics), for image and object points. The homogeneous coordinates are defined

by multiplying the physical coordinates by an arbitrary constant c and including the

constant as an additional element of the vector;

I- cYiczi c] T (Eq 3.8)

and

=1]0 = 0Y O' (Eq 3,9)

Note that in equation 3.9 the arbitrary constant is equal to 1. The object - image point

transformation is defined by equation 3.7, where it is implicitly assumed that xi = 0.

Rewriting equations 3.5 and 3.6, we conclude:

Yo zo x0 -f
Yi z- -f (Eq 3.10)

Fixing the image plane coordinates yi and zi the above equation describes the 3-D line over

WiLILAu tUL~ 3 -A, objectL -i located. 'ILL~erefoI, He we u isiv u.iuLau.±n 11n eqA~uation 1..7 is LIot

invertible, choice of a specific image point constrains corresponding object points to lie

along a 3-D ray (shown in Figure 3.1).

If the object points are measured relatively to the global coordinate system, the

matrix relating the two coordinate systems has to be computed. This transformation matrix
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is the product of a succession of matrices. Individually, each of these matrices defines a

rotation or translation of the image plane coordinate system relative to the global coordinate

system. The succession of transformations may be of the form:

o ( T2 R2 RI TI ) 0, (Eq3.11)

where Xo and Ko define the homogeneous object coordinates in the image plane and global

coordinate systems, respectively. Here tht first transformation is the translation T1

followed by the rotation R1, etc. The composite of the above transformation may be defined

by:

Hg-._, = T2 R2 Ri TI (Eq 3.12)

Then, the general relationship between object points measured relatively to any user

selected coordinate system and the image plane points is:

Xi = MHg iXo. (Eq 3.13)

For the simple case of only a translation as shown in Figure 3.1, we see that in object

coordinates:

Xo - -Ld dy dz]T (Eq 3.14)

Homogeneous coordinates enable us to represent the last relationship using a translation

matrix:

10 0 -dx1
ig 0 10 -dl kg.

X0= H8 0X 0 01 -dj E .5

0 0 0

2. Stereo Vision (2 Cameras)

Monocular vision disables depth perception. In fact, due to the impossibility of

inverting the 3 x 4 matrix Q = MHg. 4 j obtained in the last section, we are constrained to

the determination of image points from object points. However, we are interested in
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determining the 3-D locations (measured relatively to a global coordinate system). One

approach to solve this problem is to use more than one camera. One of our proposals, is to

use two cameras in the missile's nose separated by a distance d emulating, in some way,

the human visual system.

Initially, we assume the simplified two dimensional diagram of the stereo vision

in Figure 3.2. The scene consists of a 2-D surface. As shown in the figure, a point on this

surface is projected onto the two image planes (IPI and IP2). In general the two centers of

projection differ in length (f1 and f 2 ). It is assumed that the user selected global coordinate

system, to measure the object coordinates, is coincident and centered in the image plane

IPI. The coordinate xi is shown in the figure, the coordinate yi is perpendicular to xi and

in the plane of the page. The object point may be determined using the two projected points,

one in each camera.

The relationship between the homogeneous coordinates of the object point,

measured relatively to the image plane IPI, and the homogeneous coordinates of the

corresponding image point is

S= 
I I (Eq 3.16)

The object coordinates measured from IP2 are related to the object coordinates measured

from IPI by the following relationship:

-0 + , (Eq 3.17)

or, in homogeneous coordinates:

= 1 o • (Eq 3.18)
00
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"2-D Surface X0 = 0 OOY

x, 0 IP I T II:

Figure 3.2 Two Dimensional Stereo Vision

Then image points in IP2. denoted xi2, may be related to object points measured relatively

to the global coordinate system by:

X2 1 0 01 AO] xO
0i] = 10 0o 1 (Eq 3.19)

Using equations 3.16 and 3.19 the following relationships in object coordinates are

obtained:
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xi1 (fA -Yo)
x0 = f l V (Eq 3.20)

x° = f2 -y2 Yd . (Eq 3.21)

Equating these two equation the object's depth y, may be found:

= f1f 2 (xi 2 - xil - d) 3.22)
fAxi 2 -f 2xi -3

The object point x0 may be found, from either equation 3.20 or equation 3.21. Hence, using

two image planes permits us to determine the object point depth y, from its corresponding

image points. This was proved for a 2-D surface. Next we are going to see how to do it in

a 3-D environment.

Equation 3.13, defines the relationship between the scene three dimensional

points and the correspondent two dimensional image points by using a matrix of

transformation:

Q = MHg--. (Eq 3.23)

Hg is the coordinate systems transformation matrix which depends on the rotations and/

or translations of the image plane coordinate system relative to the user selected global

coordinate system. M is the object - image transformation matrix, which is a function of

the imaging geometry and lens model. The Q matrix is a non - invertible 3 x 4 matrix

(assuming homogeneous coordinates) and may be generically represented by:

I q12 q13 q14]

(2= q2 1 q22 q23 q24 (Eq 3.24)

Lq31 q32 q33 q34]

The missile must have sufficient processing capability to find this matrix in real time. The

object - image transformation matrix M is generally invariant (however zooming the scene.

for example, changes its value). The coordinate systems transformation matrix Hg, must
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be dynamically updated as the missile/target engagement proceeds. The selected global

coordinate system for missile guidance simulation purposes is a ground coordinate system

which will be presented in the next chapter. For full dimension (3 -D) stereo vision, the two

"cameras arrangement may be described using homogeneous coordinates as:

Xi.= QCfo, (Eq 3.25)

where the index c = 1, 2 refers to the cameras. Since each of these two matrix equations

(one for each sensor) represents two equations in physical coordinates, we obtain four

equations and three unknowns by using the two cameras stereo arrangement. The matrix

equation 3.25 can be explicitly written for each sensor as:

[C, -i q I11  q I12  q I13  q 114~ 01
c1zij = q 21 q122 q'123 q 124 y (Eq 3.26)

C ] 1q13, q132 q 133 q, 34J

and,

c2y q2 1 1 q2 12 q2 13 q214

" 221 q222 q223 q24 Y (Eq 3.27)

L c2 q231 q2 32 q233 q234 z8!-

The index of each matrix element is composed by three numbers, the first is the camera

number and the next two represent the element position into the matrix. Each of these two

matrix equations generates two equations in physical coordinates. To find these equations,

the arbitrary constants (c, and c2 ) have to be calculated. Then, each of the constants is

substituted into the two remaining matrix equations. Finally, regrouping terms as

coefficients of xg, YO and zgo a set of four equations is obtained. Performing this procedure

to obtain the first physical equation from the matrix equation 3.26, we get:

C1= - + q132Yg + qI 33zg + q134, (Eq 3.28)
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substituting this expression into clyip, and regrouping terms, we obtain:

(Eq 3.29)

(q, 11 - q1 3 1y,) x80 + (q 121 - q132 v) Y'o + (q, 13 - q1 33y•4)0• = q134y.l - q 1 14)

The set of four equations and three unknowns is written compactly in matrix notation as:

Pe, = F (Eq 3.30)

or

Fq111 - q131yil q121 -ql 32yl q113 - q133y11] q134 yi, - q114]
q121 -q1 31 z'l q 122 "-q 132 "11 q123 -q 133z21 gg q 134 z,- q124] (Eq 3.31)

q211 - q 231y12 q2 12 - q232yi 2 q 213 - q233YI2  q234 Y12 - q214
q221 - q231z12 q222 - q 232 z12 q223 - q 233 zi2j Lq234 :i2 -q224.

Equation 3.31 may be solved using least square techniques by forming the pseudoinverse

of P denoted Pt. Hence:

0 (XPL)-=PPF X = F X = Pt . (Eq 3.32)

This equation yields the mean square estimate for the object point X•. Alternatively, Xk

may be found by using three of the four equations, assuming that the three equations are

linearly independent.

In this exposition, we have assumed that the necessary image plane point

correspondences have been determined. It is important to say that this is the most difficult

problem in the development of a stereo vision algorithm. Techpiques to solve this problem

are presented in [Ref. 3]. [Ref.41 presents an algorithm to match stereo images.
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B. ESTIMATING 3-D MOTION PARAMETERS OF A RIGID BODY FROM

TWO CONSECUTIVE IMAGE FRAMES

1. General

In section A of this chapter, we have shown that using two cameras, we are able

to find the object (target) 3-D position relative to a user selected global coordinate system.

As intermediate steps, it is necessary to establish feature correspondences between selected

points in the two stereo images (static stereo). It is also necessary to establish feature

correspondences for all pairs of consecutive image frames in each camera's image

sequence. The targets that we are interested in are mainly airplanes. Therefore, we may use

as points for feature correspondences the tips of the wings, nose, stabilizers and rudder.

Estimation of the 3-D target acceleration components may be divided in three

steps. In dhe first step, the target estimated points at t1 and t2 are used to estimate its 3-D

velocity components. In the second step, the 3-D velocity components of the target are

computed using the target's estimated points at t2 and t3 . Finally, the third step estimates

the target's 3-D acceleration components by identifying the time change of the target's

velocity for each of the three velocity components. Alternatively, we may use Kalman

filtering theory to estimate the 3-D target acceleration components.

A different approach for estimating the 3-D, time dependent, target motion is now

presented. The formal definition of a rigid 3-D object is one for which the 3-D distances

between any pair of points on the object do not change with time that is, for all pair of points

on the 3-D object:
I A'm - 2nH2r Vt, V,,n, n; (Eq 3.33)
"Am 'k11 = -"n, -- I

where cin are constants. The assumption of an rigid, or nondeformable target is reasonable

and creates additional constraints for motion estimation. Rigidity constrains the motion of

individual object points to be strongly coupled, although the need for point correspondence

maintains. Then, the 3-D translation of the target may be determined by estimating the
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translation parameters of a single point object. The basis of estimating the target's motion

using this approach, is that the 3-D motion of a rigid body can be described by a 3-D

translation vector and three rotation angles chosen with respect to a user selected coordinate

system. Then, six parameters completely define the target's motion. Formulating the

rotations using three rotation matrices (R , RQ and R P), the target's motion is described

by:

X0 (t2) = RXo (tr) + T, (Eq 3.34)

where R is the overall rotation matrix:

R = ReRaRp, (Eq 3.35)

and T is the translation matrix. Equation 3.34 may be represented in homogeneous

coordinates as:

R IT
Xo (t2) - o (t). (EL 3.36)

o 0 0 0 1]

2. Monocular Motion Estimation Using Two Perspective Views

Our goal is to compute dynamically the rotation (R) and translation (T) matrices

from point (or feature) correspondences between two perspective views. We can divide the

process of estimating the three - dimensional motion of the target from image sequences in

three steps. The first step is to establish feature correspondences between two consecutive

image frames. Correspondences between features may be established through matching or

inter - frame Lracking. [Ref.4] develops a two - view/stereo matcher that computes

displacement fields from two images. The second step is to estimate the motion parameters

(R and T matrices). The third step is to estimate the 3-D motion of the target using equation

3.34. There are a number of papers in the digital image processing and computev vision

literature dealing with estimation of the motion parameters of the 3-D motion of a rigid
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body from two consecutive image frames. Weng, Huang and Ahaja [Ref. 5], propose an

algorithm-n that given 8 point correspondences solves for a intermediate matrix called the

essential parameter matrix (E). Then the Rotation matrix (R) and the translational direction

(the unit vector T-) are obtained from E. The magnitude of the translational vector (11 T):!

and the absolute depths of the object points (Xok and x' ok where xok is the absolute depth

of the object's k feature point and X'ok is the absolute depth of the object's k feature point

after being rotated and translated) cannot be determined by monocular vision. The

Xok X'ok
algorithm also solves for the relative depths ( - and -). The algorithm is unable to

estimate the target's position because it is not possible to calculate the absolute depth. This

agrees with intuition, due to the lack of invertibility of the 3-D to 2-D image transformation.

To overcome this problem, we propose to estimate the absolute depth by correlating the.

dimensions of the target over the image plane with the guessed physical dimensions of the

target. A relatively easy trigon(,metric approach permits us to estimate the target's depth

given the target's physical dimen -ins. Another approach for emulating stereo vision is to

use range and directional spatial information from the seeker. This information is combined

with the monocular vision equations in order to estimate the target's 3-D motion.

In conclusion, monocular vision may be applied to estimate the motion of the

target if additional information about the target is available (or guessed). The target's

acceleration components may now be estimated and injected into the missile's control

algorithm.

3. Stereo Motion Estimation Using Two Perspective Views

As we have seen, two or more spatially distributed sensors enables determination

of the 3-D target motion. Here, our goal is to determine, not only the target's motion but

also the rotation and translation matrices that describe the motion. Given two consecutive
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time samples or "frames" in each sensor, as well as image point correspondences, we may

write:

X1 (t) = Q X igA0 (t), (Eq 3.37)

(t) = Q2.iko (t), (Eq 3.38)

9q

R ii
-I

X(t + T) =Q~ 4 k(+ 8  . 4  ko(t), (Eq 3.39)

-0 0 0 1J

L R t
=(t+7,) Q2.. i.(t+ Tr) = Q2 j(t)

o I (Eq 3.40)

The matrix Q is the, already known, 3-D to 2-D transformation matrix (the superscript

refers to the sensor). Ts is the time between two consecutive images. The system is

represented in homogeneous coordinates. Assuming n point for point correspondences, a

total of 8n equations in physical coordinates is obtained. However, the number of

unknowns is 12 + 3n (9 elements of R, 3 elements of t and 3 elements for each Q0). This

yields the constraint on the number of point for point correspondences:

12 + 3n < 8n. (Eq 3.41)

Since n must be an integer, n > 3. Thus, three corresponding image points from two views

in two frames are sufficient to determine both the motion parameters and the 3-D location

of the object points.

The three target acceleration components may be computed by taking the second

derivative following the filtering of the target's motion data. Alternatively, the target's

motion may be processed by Kalman filters to estimate its acceleration components.
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This additional information about the target's behavior may be used to improve

the missile guidance towards the target. In order to effectively use this information, we have

first of all to determine control laws that can use and produce better results if this

information is available. This will be stressed in the next chapter.
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IV. SIMULATION DEVELOPEMENT

A. CONTROL ALGORITHMS DEVELOPMENT

Chapter 1I introduced propcrtional navigation guidance. In this section we derive more

advance guidance laws. Contrary to PROPNAV, these guidance laws use the estimated

acceleration of the target as a additional input to the homing loop. As will be seen in

Chapter V, the advanced guidance laws relax. the interceptor acceleration requirements and,

in general, yield smaller miss distances.

1. Augmented Proportional Navigation

Proportional navigation issues control commands that are proportional to the

predicted zero effort miss normal to the line of sight (ZEMPLOS). That is, the missile

guidance system tries to minimize the final miss distance between the target and the missile

by issuing acceleration commands that ar- proportional to the miss distance, that would

result if the missile made no further corrective acceleration and the target did not maneuver.

Therefore, if the target maneuvers evasively it generates additional miss distance that is not

accounted for in the PROPNAV guidance law. Augmented proportional navigation also

issues guidance commands that are proportional to the predicted miss distance. However,

for augmented PROPNAV, the miss distance is estimated by taking into account the

maneuver of the target (target acceleration). The augmented PROPNAV target's

acceleration dependent .cr,'n will be calculated. This term is injected into the homing loop

to enhance the guidance performance. In the following analysis, we follow the

nomenclature of Chapter II and the geometry of Figure 2.6.

The x component of the miss distance, for an evasive target., is computed as

follows (the y component is computed similarly):

d (rt,)) = vx(t), (Eq4.1)
dt' r'(')

where t' represents time. Then,
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ZEMX(t rxIt,.t rx (t) + fVx (t') dt'. (Eq 4.2)
t

Where, ZEMX (t) is the x component of the zero effort miss, predicted at time t' = t and

rx (t) is the present missile - target relative distance along the x axis. But,

aq(t,) = d- (Vx(t,)) (Eq 4.3)dr'

where a' (t') is the x component of the target acceleration. Then,

dvj(t') = fat(t")dt", (Eq 4.4)
v, (t) t

where t" is the variable of integration. Hence:

Vx = Vx(t) +f a(t")dt"'. (Eq 4.5)

Substituting this equation into equation 4.2, we get the expression for the predicted x

component of the ZEM at time t:

ZE~x(t)= =x rx(t) +V,(t)t + ffat(t")dt"dt". (q46
ZEMx (t) =rxI - =, rt(o). (Eq 4.6)

tt g tt

Where, tg, =F - t is the time to go. The y component of the ZEM (t) is obtained using

the same reasoning, and is:

ftt

ZEM (t) = r,,I = ry(t) +Vy(t) tgo + ayt(t")ddt"dt". (Eq4.7)
ft

t' l

The two interior integrals tax (t") dt" and ray (t") dr" are time functions; call:
t t

tt

kX-V) f tax (tit)dt", (Eq 4.8)

and

35



ky(t) = a~t(t) dt". (Eq 4.9)
It

Then, equations 4.6 and 4.7 may be expressed as:

(Eq 4.10)

tF

ZEMx(t) = rx!, = rx(t) +vx(t) tgo+fkx(t")dt" = rx(t) +Vx(t) tg0 +hx(tgo)
t

(Eq 4.11)

ZEMY(t) = ryI 1  . ry(t) + Vy(t)tgo + fky(t")dt" = ry(t) +vy(t) tgo+I h(tgo)
t

where hx (tg,) and hy (tgo) are to and maneuver dependent functions. The component of the

ZEM that is perpendicular to the LOS, ZEMPLOS, is:

ZEMpos(t) = ZEMy(t) cos(% (t)) -ZEMx(t) sin (4(t)). (Eq4.12)

r (t)
Substituting 4.10 and 4.11 into this equation and setting cos (Xt (t) t) and

-• ~ry (Wt
sin (X(t)) - rý(,) we obtain:r (0

ZEMPLOS (t) = (Eq4.13)
:•r (t) r(

(r (f) + v (t) t + h (t ))r I() - (r (t) + v (t) t + h (to r (t)
r.....)t

From equation 2.52:

Xtr) = v -(t)v(-(t)-r (t) v.E(.)• • (t) =: t (F_.q 4.14/)-*
~rz (t)

Then equation 4.13, which takes into account the target's acceleration to estimate the miss

distance, may be reduced to:
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r (t) rY((t
ZEMPL~os(t) = t8 0r (t)(t) + ( h,(t)-r(t) -lix (tgo) .(t) (Eq4.15)

The PROPNAV guidance command may be expressed in terms of the ZEM as (see derivation

in Chapter IH):

NVC(t)zE~Mj Js(t)
. . ..) = r ... . .. , (Eq 4.16)um (t) . r (t) i~go

where ZEMPLOS (t) was then derived for a nonresponsive target. If the target maneuvers the

zero effort miss is augmented by an additional term, on the right hand side of equation 4.15.

Therefore, a. perfectly plausible guidance law, in the presence of target maneuver, would be:

(Eq 4.17)

NV, (t)

UrAPN(t) =V(t).(t) + (t)tg (hy (tgo) cos () (t))- hx (tgo) sin (X (t)))'

This guidance law is PROPNAV with an extra term that accounts for the maneuver of the

target. The equation was derived for a nonlinearized geometry. The impossibility of knowing,

a priori, the future target maneuver, precludes the calculation of h,, (tqv), h/ (tgo) and t.,o

However, if the target desires to inflict the most miss distance it must maneuver at a small time

to go. Also, considering the time constants associated with the target's maneuver, we propose

to approximate the time dependent target acceleration a, (t') by a constant target

acceleration(a, (t) ) i.e.assumne a, (t') = a, (t) . Then, the control law may be stated as:

(Eq 4.18)

. NV¢ (t) aty (P) 190 a, .gu (1) = NVC() W + NV()(~(~~Cos (X,(t))-') sin (X M)
M APN (t) tgo 2 2

or,

NV NVctgU 'apN X r + -2- (a cos (X) - a' sin ())0 (Eq 4.19)
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where; the time factor was dropped. The extra term, present in augmented PROPNAV

(expression in parenthesis on the right hand side of equation 4.19), is proportional to the

component of the target acceleration normal to the LOS.

Linearization of the nonlinear missile - target geometry is shown in [Ref. 1] to be

an accurate approximation to the actual geometry. Then, assuming a linearized geometry,

equation 4.19 may be further reduced to:

AT + N a 2 (Eq 4.20)

where we have considered that the LOS angle is small. A zero - lag augmented proportional

navigation homing loop assuming linearized geometry is shown in Figure 4.1.

PhysicsNoise

Phystcs Seeker Filter

2 VtoS 1 g

Navigation
la V

I n

VIyC
Guidance
system

Figure 4.1 Zero - lag Augmented Proportional Navigation Hooming Loop
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The additional target maneuver term required by the guidance law, appears as a

feedforward term in the homing loop block diagram.

2. Optimal hitercept Guidance

The missile - target engagement scenario may be described in state space

representation by the following linear system:

.(t) = f[x(t), u(t),t] = Ax(t) +B u(t); (Eq4.21)

x is the n - dimensional state vector describing the relative movement between the missile

and the target and also, the dynamics of the guidance system. The variable u is the m -

dimensional missile's control input vector. We seek to find a guidance law that is a function

of the system states. There is an infinite number of possible guidance laws. Thus, it is

necessary to state in mathematical terms what the guidance law should do. Certainly we

wish to design a terminal controller that would bring certain components of x ( tF) to zero,

using "acceptable" levels of control. One way to do this is to minimize a performance index

made up of a quadratic form in the control:

J f L[x)(t)u(t),tldt = 2fu2 (t)dt, (Eq4.22)
0 0

subject to the terminal constraint:

xi(tF) = 0, i = 1, P....., (Eq 4.23)

and the constraints:

. (1) = f[.x(t), u (t),t] = Ax(t) + Bu (t), (Eq 4.24)

x (0), given. (Eq 4.25)

In equation 4.23, p < n.

The miss distance wiLt always be zero in a zero - lag PROPNAV navigation

homing loop. Guidance system lags or subsystem dynamics will cause miss distance.

Optimal guidance eliminates miss distance by canceling out the guidance system dynamics.

In this way the optimal guidance law attempts to make the real world guidance system
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appear to be a "perfect" (zero - lag) guidance system. To find the optimal control vector,

u (t), that brings the system from a initial state x (0) to a terminal state x (tF) (where

some of its components are zero), we can use the method of the Lagrange multipliers. Then

the constraints (4.23) and (4.24) may be adjoined to the performance function (4.22) by

using the multipliers ( = ( . , 0p+..,,) 0 and XL = (X 1... 1 ))7 as follows:

1 ,

S= rx (t) + f {t,2 (t) + XT(t) [Ax(t) + Bu (t) -. (t)] } dt.(Eq4.26)
0

The Hamiltonian is defined as follows:

H[xt(t),it),t] = L[x(t),u(t),t] +X.Tf[x(t),u(t),t]. (Eq4.27)

Integrating the last term on the tight hand side of equation 4.26 yields:

(Eq 4.28)
if

F-= Tx td)-_?,T (;F)X tF) + kT (O) X (O) + f J H [x (t) ,u (t), t] + k (t)x (t) I}at,

0

Considering the variation in J due to variations in the control vector u (t) , we get:

(Eq 4.29)
1'.

dJ- [ (J_ kT)dxlt]t+ [,TdX]t0 +f [(III+ r(t)) d. + Hddt

In order to make the variations in i due to variations in u (t) independent firom the

variations in x (t) produced by the variations in u (t) we choose the influence functions

X (t) to cause the coefficients of dx to vanish:

t) W -x = - x- 0x"(Eq 4.30)

Then:

(t) = -A TX (t), (Eq 4.31)

with boundary conditions:

X(tF) = F. (Eq 4.32)
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Using these results, equation 4.29 becomes:

j = 4T (o),(o) + t'DH dudt. (Eq 4.33)

0

Hence, 4T (0) is the gradient of J with respect to vaiiations in the initial conditions, while

holding u (t) constant and satisfying the constraints of the problem. For an extremum, dJ

must be zero for arbitrary du (t). This can only happen if:

0H = 0, 0 <t t < tF (Eq 434)

or.

uT + XTB = 0, (Eq 4.35)

Then, we may d':termine the control vector u (t) , as:

u (t) = -BrX (1) . (Eq 4.36)

Substituting equation 4.36 into equation 4.24 and repeating equation 4.31, the following

two - point boundary value problem is obtained:

K ýj A0 -A3T j (Eq 4.37)

10 -A Tj]

The 2n boundary conditions are:

Sx(0), given, (Eq 4.38)

xi(tF) = 0, i = 1,... (Eq 4.39)

Xi(tF) = 0, i = p + 1, .... n. (Eq 4.40)

The n boundary conditions 4.39 and 4.40 may be replaced by the boundary condition 4.32,

which may be rewritten as:

X i(tF) = ; i = 0, ..... p, (Eq 4.41)

ii(tF) = 0; i = p+ .... n . (Eq4.42)
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The two - point boundary value problem 4.37, 4.38, 4.41 and 4.42 may be solved by the

sweep method [Ref. 6]. The sweep method seeks to find solutions of the form:

X(t) = W(t)x(t) + Y(t) e; (Eq4.43)

= U(t)x(t) +V(t)E. (Eq4.44)

where W(t), Y(t), U(t) and V(t) are time dependent rnatrices,

: = [. 1 ... ,x I - and PJ = [I ... , E ..... I., t . Therefore, we want

to find solutions for the influence functions X. (t) that are function of the state vector v (t)

and the final value of the influence functions, or equivalently, of the specified final states

Since equations 4.43 and 4.44 must be valid at t =F:

W (IF) = 0' (Eq 4.45)

k VF(t) = 0, (Eq 4.46)

1 XP
Y (tU) = , (Eq 4.47)

0 (n-p)xp

U(tF) xp Iopx (Eq 4.48)

PXn

where I is the identity matrix and 0 is a zero matrix with the specified dimensions.

Substituting equation 4.43 into 4.37 and treating F as a constant vector, we get:

Wx + We+a = -AT(Wx+ YE) . (Eq 4.49)

Substitutirg . from equation 4.37 into the last equation, and again using equation 4.43 to

eliminate X, we obtain:

(W + WA +AW-WBBTW)x+ (ATY+Y -WBlry) = 0. (Eq 4.50)

This expression must be true for any x and c.. so the coefficients of x and F must vanish:
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W+WA+ATW-WBBTW = 0: W(tF) 'O, (Eq4.51)

and

+ATY WBBTy = 0: Y(ti..) = _ _ _ (Eq4.52)

O12-p xp

1 X p )

Next, we differentiate equation 4.44 with respect to time, treating L and - as constant

vectors.

&x + UX+V = 0. (Eq 4.53)

Substituting . from equation 4.37, and using equation 4.43 to eliminate X, we obtain:

(0 + UA -UB3BTW) x + (V _- UBB T y) C = 0. (Eq 4.54)

This last expression must be true foi any x and v-, so the coefficients of x and e must

vanish:

+ UA - LIBBTW = 0. (Eq 4.55)

'-UBBTy = 0. (Eq 4.56)

From equations 4.52 and 4.55 and the boundary conditions 4.47 and 4.48, we conclude that:

U (t) = Y' (t). (Eq 4.57)

Then equation 4.56 may be rewritten as:

-Y'BB
1 y' V (tF) = 0. (Eq 4.58)

The Ricatti equations 4.51, 4.52 and 4.58 may be integrated backwards from the final

conditions to yield W (t), Y (t) and V (t) . The equation 4.44 is solved for c to yield:

r= [V(t) J-[z - Y"(t)x (t)]. (Eq 4.59)
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Our goal is, to find the influence functions A. (t) in order to find the optimal

cont'ol 'vector using equation 4.36. Equation 4.59 may be substituted iLLI.equation 4.43 to

findX (t) :

,(t) = (W-gYV' 'r)x.() + YV-'z. (Eq 4.60)

However, the Ricatti equation 4.51 has as solution:

W(t) = 0. (Eq 4.61)

Hence, equations 4.52 and 4.58 become simply:

r-1

Ip×

*I ItXP
Y+A"Y = 0; Y(tF) - - , (Eq 4.62)

Ion Pnxp

and

V (t) = B(TBIY) dti. (Eq 4.63)

Combining equations 4.36, 4.60 and 4,61 yields:

u (t) = -BTX (t) = (-BTYV-) [z - Yx (t)] (Eq 4.64)

The final condition that we are interested on is z = [xt, .. IT = [0, 0] r

Hence the expression 4.64 may be reduced to:

I (t) = B'Yr'y yTx (t), (Eq 4.65)

where Y and V are computed from equations 4.62 and 4.63, respectively.

Nowuhat we have derived tehe teriniial conuroller optimal feedback guidance law,

we proceed to derive the continuous feedback law described by equation 4.65 for a single

lag guidance system. The single - lag guidance system is mathematically described in the

Laplace domain as:
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Figure 4.2 Intercept Geometry

am 11 - I (Eq 4.66)m1 -1 4.Ts'

where aM is the missile's acceleration, u. is the command acceleration, and T is the

effective guidance system time constant.

The relative motion between the target and missile is considered with the

linearized (small angles approximation) intercept geometry shown in Figure 4.2. The

assumption of small angles (flight path angles OIn, ot and LOS angle X) permits us to

express the equations of motion in terms of state variables normal to the reference intercept

course. The single - lag guidance model shown in Figure 4.3 integrates the missile - target

relative motion of Figure 4.2 with the dynamics of the guidance system. The diagram of

blocks of Figure 4.3 can be expressed in state space form as:

001 -1 0<Lg (Eq 4.67)
0, o o - , ] 0 urn,
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Thus:
r 7

:0 1io 00 10]•); 10 0 1 - 1!, ,'01

X A 1 "000 0 B 01 (Eq4.68)
S I it
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r--

iO 0 0 0 ,

1O 0 0 0 Y' 0, Y(tF) =; (Eq4.70)

Y is obtained by integrating equation 4.70 backwards, and is:

SII -I

I tF l I tgo
(tF t) 2  

I t

S= 1= 2 I (Eq 4.71)F tF -t 0 • '7, 1' ,
,,r~ ~t Z -,Ft) -e T 1l -T _f- tg° J

.L L 7'] L T

The matrix V (in this case, V is a scalar since we are specifying only one terminal

constraint, namely zero miss distance: y = 0), is computed using equation 4.63:

(Eq 4.72)

'• t•1 tF ~ •

V(t) -yT ydt= (I eT+---I dt; where to=t
V ft f-YB'd-( T 1)go0 tF~

t I

After some cumbersome computations, we find:

(Eq 4.73)

3 2k -2k t
V(t) =-(-k 3 +3k 2 -3k) + 12ke- +3e -3; where k tgo

Then using equation 4.65 we obtain the optimal feedback control law:

N - - 2 ,+ 1 -a --2 • -k
u(1) = NM - [Y+YtgolLL'agtgo + -amI ) ( +k- 1), (Eq 4.74)

tgo

where N = 6k 2 (e-' + k - 1) k = • (Eq 4.75)
2k3 - 6k2 + 6k + 3 - 12ke-k - 3e-; k T

It is desirable to express the state variables y and y€ in terms of the line of sight rate X.

Assuming small angles, we find from Figure 4.2 that:
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(X Vc (t-t)) " go (Eq 4.76)
- Vc(tF C go

hence, the optimal control law can be expressed as:
-k ( +k- 1)a + 2a. (Eq 4.77)

This equation is a biased proportional navigation guidance law where a time varying

navigation gain N and an acceleration feedback path provide compensation for the missile

time lag. The acceleration command is issued normal to the LOS.

B. TRIDIMENSIONAL MISSILE/TARGET ENGAGEMENT

In this section we are going to model the missile/target tridimensional engagement

scenario. Three guidance laws, namely: PROI'NAV, augmented PROPNAV and optimal

guidance will be used and tested in missile guidance. The engagement for the two later

guidance laws will be modeled, by assuming the presence of a seeker fand a camera aboard

the missile to extract the target's 3-D acceleration. The three dimensional MATLAB

programs are presented in Appendices A through C. The simulation results are presented

"in the next chapter.

1. 3-1 Missile /Target Geometry

The tridimensional scenario is developed in spherical coordinates by defining two

perpendicular planes in pitch and yaw, as illustrated ty Figure 4.4.

In Figure 4.4 r is the relative distance between missile and target; Xpitcn and X,,Yw

are the Line of sight angles over the pitch and yaw planes, respectively, and may be

ip expressed as:

Xpch -atan (Eq 4.78)

h (Xt t X, _ + (y _ ym) 2
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atn (Y,-Yrn)]
Xvaw - atan ) (Eq 4.79)" ~~L (xt- X)

The coordinate system shown in Figure 4.4 translates with the missile. To track

the missile target tridimensional positions we define a ground based coordinate system

shown in Figure 4.5.

z

(xt, Y1, zt)LO 'S Target

LOS in pitch Tre

r

pitch plane

F 4 Missile LOS gl

In Figure 4.5: isl!age O nl

=m--.. . (Eq 4.80)

•'m_~ ~ ~ ~ a pilaneaa ,_•2

"K/r' +Ym)'

r 449

InFgre45
ki-pth!_aanI E .0



na(Eq 4.8 )xi- •' pitch •"atan 2- 2'

z

.. . Missile or. .............................. TargetS• (vmYm z, or

m.pitch or

pitch

or.
m yaw t- yaw ~ .

...---------...................

x

SL~igure 4.Gi3oun-fffii-6-diiiiS-ystem -_

km = atan , (Eq 4.82)

xt. = atan (Eq 4.83)

The missile is controlled in 3-D space by issuing guidance commands in two

orthogonal planes (pitch and yaw), upitch and uvaw. The magnitude of these commands
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depends on the selected guidance law and their tridimensional direction is perpendicular to

the LOS defined in the two planes (see Figure 4.4). The LOS in pitch is defined by the

imaginary 3-D line from the missile to the target in the pitch plane. The LOS in yaw is

defined by the imaginary 2-D line from the missile to the projection of the target over the

yaw plane. The yaw plane is simply the horizontal .xy plane. The pitch plane is the vertical

plane normal to the horizontal plane and rotated by the yaw angle Xy,'

The guidance laws under study can be expressed as a function of the classical

proportional navigation guidance law plus a term that may depend, among other variables,

on the target and missile accelerations. Hence, each guidance law (classical proportional

navigation, augmented proportional navigation and optimal guidance) can, in general, be

expressed, as:

it, (t) = NVCA +f(am, all tgo, T) (Eq 4.84)

where um (t) is the guidance command that is issued perpendicular to either the LOS in

yaw or the LOS in pitch. N is constant for PROPNAV and augmented PROPNAV. For

optimal guidance, N is function of the time to go and the effective time constant of the

guidance system. The closing speed Vc, is the relative speed between the target and the

missile along either the LOS in yaw or the LOS in pitch. The LOS rate . may be the LOS

rate in either the pitch or the yaw planes. The term f(am, at, t go, T) may be function of both

the missile's acceleration am and the target's acceleration a,, the time to go i.,, and the

guidance system's effective time constant T. In order to generate the pitch and yaw

guidance commands 1upitch (r) and (t) , it is fuist necessary to explain how to obtain

the variables that they depend on.

2. Seeker Head Modeling

The seeker is able to detect, acquire and track by sensing and processing the

radiation or reflection of energy by the target. The seeker is normally located in the
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missile's nose and mounted on a gimballed platform which maintains the target within the

field of view by rotating the platform.

The control torque to the seeker may be described by the following equation.

T = 1ý1, (Eq 4.85)

where T is the applied torque, I is the seeker's moment of inertia and 1 is the seeker's

angular acceleration. The seeker's dynamics is modeled by the following second order

differential equation:

7-' (:3- ,) - r2f3, (Eq 4.86)

where the coefficients ce and c2 are determined by the seeker's time constant (-csk) and

damping ratio. Taking the Laplace cransform of equation 4.86, assuming zero initial

conditions, we obtain the filter's transfer function that represents the relationship between

the LOS angle input A\. (s) and the seeker i~ead angle output [3 (s)

1(S) CI--- 2(Eq 4.87)

Assuming a damping ratio of one, the transfer func-oon in equation 4.87 may be rewritten

as:

(3(s) = -•I (Eq 4.88)
SS 2 +s+C (S+ 2---

Tsk

Choosing "sk = 0.1 sec (which is a good approxination of a real world system), the

constants c, and c1 may be obtained:

12
== 100, (Eq 4.89)t,•k

c2 = 2 (-- =20. (Eq 4.90)!T tvk



Given that we are interested in the 3-D missile/target engagement, the seeker must provide

line of sight rate information in both planes. Hence:

Opitch 2 20 (_q 4.91)

)pitch S1 +20s+ 1004

15v,,20
PUV 2 0~ (Eq 4.92)

vaw=s + 20s + 100

where fýpih and f3 are the seeker's pitch and yaw angles, respectively. Figures 4.6 and

4.7 depict the pitch and yaw signal flow graphs of the seeker.

Pic O~pitch P "pitc'h
1pitch 100 1

-20

-1

Figure 4.6y Seker Head Flw GMrapsh (Pitch

From these diagrams, the continuous-time state equations of the form:

Xsk = AskXsk+B + kBsk' (Eq 4.93)

may be easily obtained. Selecting the state vector to be:
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Xsk - pitvh (Eq 4.94)

LPya w

1 fayaxa I yaw P .

1001 S S s

"-20
Z

Figure 4.7 Seeker Head Flow Graph (Yaw)

and the seeker head input as:

s - I ' 
F_ 4.pich

SXyawj

equation 4.93 becomes:

[QF 1 0 0 10 o]
= -100-20 0 0 x Usk, (Eq 4.96)

0 0-100 -20] 10 00]

54



The variables and oya, are e,,timates of the LOS angle rates n d

SXyaw, and are available from the, second and forth states of Xsk, respectively. The estimates

of the LOS rate in pitch and yaw permits us to determine the missile command inputs upitch

and uyawn

3. Guidance System

In this work, the guidance system dynamics are modeled as a single lag as seen in

equation 4.66. This equation is repeated here.

a. (s)

U (H-)- = + (Eq 4.97)

For the 3-D missile/target engagement the guidance system generates missile commands in

both planes, pitch and yaw. Hence:

am -pitch (1S) 4

Upitch (S) I + Ts' (Fq4.98)

am, yaw (S) 1
Uyaw (S) T • ls'(q4.9

where am. p,,,,, and am- yaw are the pitch and yaw missile's accelerations; upitch and uyvaw

are the pitch and yaw missile's acceleration commands. Figures 4.8 and 4.9, show the pitch

and yaw signal flow graphs, for the missile guidance system. We chose the guidance system

time constant T to be 1.0 second.
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Upith Cln pI. Ic/I S ain pitch

Figure 4.8 Guidance System Signal Flow Graph (Pitch)

I
4 uae Systm ySa F aph y

-1 a

Figure 4.9 Guidance System Signal Flow Graph (Yaw)

From these diagrams, the state equation is easily obtained. Defining the guidance system

state vector as:

s a=n-pitch (Eq 4.100)

L -yCw

and the guidance system input as:
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Ugs = UpitWh, (Eq 4.101)
I IyawJl

the state equation becomes:

_-1 01 ,101"0 -li'v+ i0 1; (Eq 4.102)

4. Missile And Target Kinematics

The missile is controlled in three dimensional space by generating acceleration

commands in two orthogonal planes. Thesc planes are the pitch and yaw planes. The

acceleration commands in pitch and yaw are issued perpendicular to the respective lines of

sight. The magnitude of the acceleration commands depends on the selected guidance law.

From equation 4.84, the pitch and yaw missile acceleration commands may be expressed,

in its general form, as:

Utpitch =NV. lirch ipitch +Jpirch (amra , tgt, T) , (Eq 4.103)

UtyV =NVC -yawk yw + fy,) (amn,at,tgo, T). (Eq 4.104)

Vca pitch nad V._ yaw are the relative speeds, between the target and the missile along the

pitch and yaw line of sights. The functions fpith (am, a,, t.0, T) and , (at,, a ,, ( 17')

are the augmented PROPNAV or optimal guidance extra terms in pitch and yaw,

respectively.

In order to track the missile's 3-D coordinates (x,,, yv,, zd), the missile command

accelerations in pitch and yaw, are broken down into cartesian coordinate system

components.

Figure 4.10, shows the decomposition of the pitch acceleration command in its

components. From this figure the following relationships are derived:

amnx_ pitch = - (al_ pitch sin.pitch) Cos Xyaw, (Eq 4. [05)

amx. pitch = -. (a,_ piCh tc sinkpitch) sinýyaw, (Eq 4.106)
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amzpitch - ampitcios Pitch" (Eq 4.107)

A Target
/ (xt, V't zt)

am.r

*tn pitch 
j, f/inz. pitch pitch plane

... ' • • yPiptth

(1" , "JO y

ai nx . p itc h M is l

S~ yaw plane

Figure 4.10 Pitch Plane Accekratioii Components

Figu,,-e 4. 11 shows the decomposition of the yaw plane acceleration command in

to its x and y components. From the figure the following relationships are obtained:

a = -a,n. vaiwsinX , (IEq 4.108)

amy_ yaw = a_ ywcosAya" (Eq 4.109)
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Figure 4.11 Yaw Plane Acceleration Components

To find the overall missile's acceleration components along the three cartcsian axis. we use

the results of the equations 4.105 through 4.109:

a m=ax. pitch 4 "tmx- yaw, (E_. 4.110)

(2y " a,,,y pitch + amy. yaw. (Eq 4.111)

a,,z "--" •Ztn~z.pltch" (Eq 4.1 12)
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The missile's tridimensional movement is determined by these three acceleration

components. Defining the missile state vector as:

XYn , (Eq 4,113)

nd the input as the missile's acceleration command:1

a= :,y , (Eq 4.114)

the missile state equation is:

'000000 1001
X -= 0001001X+0 0 a01 . (Eq4.115)

ii 00000 11 .0001
OOO0O00O00J 10 011

As we have seen in Chapter III, the missile when equipped with a camera and a

seeker is able to estimate the target's 3-D acceleration components. This information may

be used to improve the missile guidance towards the target. Defining the target state vector

as:

_ Yti.' (Eq 4.116)

and the target's acceleration as:
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a 1
a, atVI, (Eq 4.117)

the target state equation is:

00000 0i .1001100010 o0X 000 1a (Eq 4.118)

- oo ooooK '.o0ol

LOU 00 000 00 11

the tridimensional target acceleration at may be e ..,ated using the missile's image

processing capabilities;

5. Pitch And Yaw Closing Velocities. Determination Of Time To Go

Figure 4.12 shows the decomposition of the missile and target absolute velocities.

From this figure:

-Vmx
V, hV,ayl, (Eq 4.119)

V al V (Eq 4.120)

Lt tyi

Figures 4.13 and 4.14 show the projection of the missile's velocity vector over the pitch and

yaw planes,

Ka These figures permit us to compute the missile's and target's velocity

components, over the pitch and yaw planes:

Vm -pitch VmCos (-Y- yaw aw)Eq4.121)

Vm_ = VMcoSY ve' (Eq 4.122)
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and

=Vco (y, a - (Eq 4.123
r-. pitch -" ICO8 (•t_ yaw -- ya )'( 4 23

Vt_ yaw Vt Y. ver' (Eq 4.124)

z

* Inn
VII/•

V x ya ---..-----

z
V .. . :::•"

Vtz

*Vt

* ty -

x

Figure 4.12 Missile And Target Velocity Components

The pitch closing velocity V'_ pitch is found by projecting the missile's and target's pitch

plane velocities along the LOS in pitch (see Figure 4.4). Then:

(Eq 4.125)
V cpitch =Vi_ pitchcos (X pitch -Ym_ pitch) " Vt pitchcos ( pitch - Yt. pitch)
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Simi~larly, the yaw plane closing velocity, is obtained as:

(Eq 4. 126)

yaw Y( I V m-yawCOS (ym Yaw ?yaw) V'I yaW cOs (-y Yaw A-yaw)

Cm- pitchh

wher r i themisile/arge reativ disanc alon th pitch1 lOS n(eeFgr4.)
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7,f

Y yaw- pitah e

Figure 4.14 Target's Pitch And Yaw Velocity Components

6. Proportional Navigation

The PROPNAV 3-D simulation, in Appendix A, uses missile commands in pitch

and yaw of the form:

-ptcNVc_ pici ic (Eq 4.128)

U yaw NVc yawkyaw (Eq 4.129)

where N I;. a.-ntat

7. Augmented Proportional Navigation

Thle augmented PROPNAV 3-D Gimulation, in Appendix B, uses missile

commands in pitch and yaw of the form:

Uph=Nc_ pi,.ch kpitch + Nt- pitch' (Eq 4.130)
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S= NVc_ yawdyaw +0.5NarYa (Eq 4.131)

where a,_ pitch and a, yaw are the components of the target 's acceleration normal to the

pitch and yaw line of sights and N is a co,.stant.

8. Optimal Guidance

The optimal guidance 3-D simulation, in Appendix C, uses missile commands in

pitch and yaw of the form:

It + -(eN + k -)a. + (Eq 4.132)cpitch NVc_pitch pitch k 2 M 1 ilch 2 a1 pitch,

II =NVC..+ N(ek +k-1)a +N

Yaw = Y.aw VaW ni- yaw 2- yaw (Eq 4.133)

where k and N are given by equation 4.75.

9. Discrete-Time Simulation Using State Space Methods

The general continuous-time state equations are:

. (t) = Ax (t) + Bu (t) (Eq 4.134)

y(t) = Cx(t) +Du(t) (Eq 4.135)

where x (t) is the state vector and y (t) is the output vector. This system is simulated by

iterating the discrete-time state equations:

x (n + 1) = O1)x (n) + Fu (n), (Eq 4.136)

y (n) = Cx (n) + Du (n). (Eq 4.137)

where:

S=eA T, Ts = sampling time: (Eq 4.138)

T,

A = JeAIB dt. (Eq 4.139)
0
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The missile/target engagement scenario is simulated using the MATLAB

software package. The discrete-time state equations used in the simulation are defined for

the seeker, guidance system, missile, and target dynamics:

.sk (iI + 1) = (1skAXsk (0) + Fsuk (U. ) ; (Eq 4.140)

Xgs (n+1) + = gsXgs (n) + rgsugs (n1) (Eq 4.141)

X, (I + 1) = 'Vnmm (t1) in F,nlu (tn) (Eq 4.142)

"xt (ii + 1) (DIxt, (n) + ['tltt (n). (Eq 4.143)
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V. SIMULATION RESULTS

A. GENERAL

This chapter presents the results of the computer simulations for a missile equipped

with a radar and a camera. The missile/target 3-D engagement was simulated using three

control laws:

1. Proportional navigation,

2. Augmented proportional navigation,

3. Optimal guidance.

The simulation was conducted for two different target maneuvers:

1. A 3-D constant target acceleration,

2. A 3-D varying target acceleration.

The following assumptions are made throughout:

1. We assume that the simulation's initial conditions are defined when the missile

enters into the terminal phase of the flight (about 10 seconds before impact).

2. The PROPNAV and APROPNAV effective navigation constant is 3 (N = 3),

3. The missile is limited to 25 g's accelerations in pitch ard yaw,

4. The instantaneous target acceleration is available from previous image

processing. No delays are assumed in this process.

5. The missile and target speeds are limited to 3500 and 2000 feet/sec,

respectively,

6. The missile is in a collision triangle with the target on entering into the terminal

phase of flight.

7. The target may start its evasion maneuver at any time (initial time),

8. The target is limited to a maximum of 12 g's,

9. The acceleration due to gravity is ignored,

10. The sampling time is 0.01 seconds.
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B. ENGAGEMENT SCENARIOS. RESULTS

1. Scenario #1 (Constant Target Acceleration)

The initial missile/target geometry (when the missile enters into the terminal

phase of flight) is shown in Figure 5.1.

z

MISSR~g
TARGET v MISIL

"50 30000
e feet

x

Figure 5.1 Initial MiEsile/Targel Geometry

The engagement iitial conditions are (distances are in feet and speeds in feet/

sec):
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Ixftn (0)-
inm (0) 2828

X.,(0) =Yn(
0 ) _ 0 , (Eq 5.1)

(0) 10(00:Z, (0) 0
: ::,, 0) 47.1339]

ivt (0) 030000

X, (0) - . -•(Eq 5.2)
!:ýt (0) ,10001

* ~500'i (0) L. 0--
0D

The target's evasive maneuver is constant (the accelerations are in feet/secA2)

• ct = 3 xg]T

1 Ixgl (Eq5.3)

where the aoeeleration of gravity is: g : 32.2 feet/sec . Figures 5.2 to 5.22 display the

results of the three dimensional simulation for the constant target evasive maneuver.

Figures 5.2 to 5.8 relate to the proportional navigation (PROPNAV) guidance law. Figures

5.9 to 5.15 relate to the augmented proportional (APROPNAV) guidance law. Figures 5.16

to 5.22 relate to the optimal guidance law. Figures 5.4 to 5.8, 5.11 to 5.15 and 5.18 to 5.22

display the results assuming that the target starts its maneuver 6 seconds after the missile

entered into the terminal phase of flight.

69

Im



MISS DISTANCE vs TIME TO GO, PROPNAV
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Figure 5.2 Miss Distance vs.Time To Go (PROPNAV)

MISS DISTANCE vs INITIAL TIME, PROPNAV
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Figure 5.3 Miss Distance vs. Initial Time (PROPNAV)
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MISSILE ACCELERATION MAGNITUDE vs TIME, PROPNAV
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Figure 5.4 Missile Acceleration Magnitude (PROPNAV)

TARGET ACCELERATION MAGNITUDE vs TIME, PROPNAV
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Figure 5.5 Target Acceleration Magnitude (PROPNAV)
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MISSILE PITCH ACCELERATION vs TIME. PROPNAV
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Figure 5.6 Missile Pitch Acceleration (PROI1NAV)

MISSILE YAW ACCELERATION vs TIME, PROPNAV
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Figure 5.7 Missile Yaw Acceleration (PROPNAV)
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x 10 4  19ANGE vs TIME, PROPNAV

•. i.

2I-

LU17

L6N

o 2 4 u 10 12
TIME - SEC

F~igure 5.8 Missile To Target Range (PROIINAV)
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MISS DISTANCE vs TIME TO GO, APROPNAV
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Figure 5.9 Miss Distance vs. Time To Go (APROPNAV)

MISS DISTANCE vs INITIAL TIME, APROPNAV
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Figure 5.10 Miss Distance vs. Initial Time (APROPNAV)
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F MISSILE ACCELERATION MAGNITUDE vs TIME, APROPNAV
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Figure 5.11 Missile Acceleration Magnitude (APROPNAV)
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F"igure 5.12 T'argel Acct.erati'n Magnitude (APROPNAV)
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MISSILE PITCH ACCELERATION vs TIME, APROPNAV
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Figure 5.13 Missile Pitch Acceleration (APROPNAV)

MISSILE YAW ACCELERATION vs TIME, APROPNAV
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Figure 5.14 Missile Yaw Acceleration (APROPNAV)
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x 10 4 RANGE vs TIME, APROPNAV
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Figure 5.15 Missile To Target Range (APROPNAV)
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MISS DISTANCE vs TIME TO GO, OPTIMAL
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Figure 5.16 Miss Distance vs. Time To Go (OPTIMAL)

MISS DISTANCE vs INITIAL TIME, OPTIMAL
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Figure 5.17 Miss Distance vs. Initial Time (OPTIMAL)
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MISSILE ACCELERATION MAGNITUDE vs TIME, OPTIMAL.
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Figure 5.18 Missile Acceleration Magnitude (OPTIMAL)
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Figure 5.19 Target Acceleration Magnitude (OPTIMAL)
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MISSILE PITCH ACCELERATION vs TIME. OPTIMAL
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Figure 5.20 Mlissile Pitch Acceleration (OPTIMAL)

MISSILE YAW ACCELERATION vs TIME, OPTIMAL
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F~igure 5.21 Mvissile Yaw Accelerationi (OPTIMIAL)
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3 10 4 RANGE vs TIME, OPTIMAL
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Figure 5.22 Missile To Target Range (OPTIMAL)
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2. Scenario #2 (Varying Target Acceleration)

The initial missile/target geometry and the initial conditions are the same as used

for the constant acceleration scenario. Naiely, the target geometry is shown in Figure 5.1

and the initial conditions are defined by equations 5.4 and 5.5. The target's evasive

maneuver may start at any time to go. The target performs the following 3-D maneuver (the

accelerations are in feet/secA2):

(Eq 5.4)

"" : 3 x g x sin (ytaw

=4 x g x cos (y•,_ a)
L,•tj 13 x g x cos (,yt_ pitch)

where -y_ ,_, and Yt_ pitch are Lhe target's yaw and pitch flight path angles, respectively.

Figures 5.23 to 5.43 display the results of the three dimensional simulation for this type of

evasive maneuver. Figure.r 5.23 to 5.29 relate to the proportional navigation (PROPNAV)

guidance law. Figures 5.30 to 5.36 relate to the augmented proportional (APROPNAV)

guidance law. Figurer. 5.37 to 5.43 relate to the optimal guidance law. Figures 5.25 to 5.29,

5.32 to 5.36 and 5.39 to 5A.3 display results, assuming that the target starts its maneuver 6

seconds after the missile entered into the terminal phase of flight.
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MISS DISTANCE vs TWME TO GO. PROPNAV
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Figure 5.23 Miss Distance vs. Time To Go (PROPNAV)
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Figure 5.24 Miss D~istance vs. Initial Time (PROPNAV)
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MISSILE ACCELERATION MAGNITUDE vs TIME, PROPNAV
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Figure 5.25 Misshe Acceleration Magnitude (PROPNAV)
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Figure 5.26 Target Acceleration Magnitude (PRO PN AV )
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MISSILE PITCH ACCELERATION vs TIME, PROPNAV
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Figure 5.27 Missile Pitch Acceleration (PROPNAV)

MISSILE YAW ACCELERATION vs TIME, PROPNAV
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Figure 5.28 Missile Yaw Acceleration (PROPNAV)

85

i '1 I i " I fi Ii ' 'F . .



0 2 18-0 12I
TIME. SEC

Figure 5.29 MIissile To Target Range (PROPNAV')
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Figure 5.30 Miss Distance vs. Time To Go (APROPNAV)
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Figure 5.31 Miss Distance vs. Initial Time (APROPNAV)
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MISSILE ACCELERATION MAGNITUDE vs TIME. APROPNAV
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Figure 5.32 Missile Acceleration Magnitude (APROPNAV)
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Figure 5.33 Target Acceleration Magnitude (APROPNAV)
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MISSILE PITCH ACCELERATION vs TIME, APROPNAV
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Figure 5.34 Missile Pitch Acceleration (APROPNAV)

MISSILE YAW ACCELERATION vs TIME, APROPNAV
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Figure 5.35 Missile Yaw Acceleration (APROPNAV)
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X 104 RANGE vs TIME, APROPNAV
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Figure 5.36 Missile To Target Range (APROPNAV)
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MISS DISTANCE vs TIME TO GO. OPTIMAL
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Figure 5.37 Miss Distance vs. Time To Go (OPTIMAL)
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MISSILE ACCELERATION MAGNITUDE vs TIME. OPTIMAL
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Figure 5.39 Missile Acceleration MagnituLde (OPTIMAL)
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Figure 5.40 Target Acceleration Magnitude (OPTIMAL)
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MISSILE PITCH ACCELERATION vs TIME. OPTIMAL
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Figure 5.41 Missile Pitch Acceleration (OPTIMAL)
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Figure 5.42 Missile Yaw Acceleration (OPTIMAL)
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x4 RANGE vs TIME, OPTIMAL
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Figure 5.43 Missile To Target Range (OPTIMAL)
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VI. CONCLUSIONS AND RECOMENDATIONS

A. CONCLUSIONS

1. Scenario #1 (Constant Target Acceleration)

MISS DISTANCE vs TIME TO GO
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Figure 5.44 Miss Distance Comparison For The 'hree Guidance Laws

(Scenario #1)
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MISSILE ACCELERATION MAGNITUDE vs TIME
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Figure 5.45 Missile Acceleration Comparison For The Three Guidance Laws
(Scenario #1)

96



2. Scenario #2(Varying Target Acceleration)
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Figure 5.46 Miss Distance Comparison For The Three Guidance Laws
(Scenario #2)
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MISSILE ACCELERATION MAGNITUDE vs TIME
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Figure 5.47 Missile Acceleration Comparison For The Three Guidance Laws

(Scenario #2)
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3. Discussion

The three dimensional miss distance may be improved by estimating the 3-D

target's evasive maneuvei. One way to estimate the 3-D target acceleration is by utilizing

dynamic image processing. Three setups were considered:

1. two cameras,

2. a camera and a radar,

3. only one camera.

In the single camera setup, actual range is achieved by guessing the target's

physical dimensions. The target's 3-D motion parameters can be estimated by utilizing two

consecutive image frames. The target's acceleration may be computed by taking the second

derivative after filtering the target's motion data. Alternatively, the target's 3-D motion

may be processed by Kalman filters to estimate its acceleration components. This

additional information about the target's behavior is injected in suitable control laws to

improve the missile's homing performance.

Proportional navigation, augmented proportional navigation, and optimal

guidance laws were derived for use in a three dimensional environment. The classical

proportional navigation guidance law tracks a target with good accuracy, especially if the

target maneuvers at long time to go. However, when compared with augmented

PROPNAV and optimal guidance, PROPNAV requires higher missile acceleration

capabilities. A plausible guidance law is one that issues missile's commands proportional

to the miss distance that would result if the missile made no furthr COlTections. Augmented

proportional navigation was derived using this heuristic argument. For a constant target

maneuver, augmented proportional navigation increases the missile percentage of kill. For

a non constant evasive maneuver, APROPNAV does not always guarantees less miss

distance than PROPNAV. However, APROPNAV requires less missile acceleration

capabilities than PROPNAV. Optimal guidance was derived for a missile with a single lag

guidance system. Optimal guidance provides compensation for the missile's guidance

system dynamics. The optimal guidance law requires the least missile acceleration
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capability of the three guidncelaws. In fact, this law is derived in order to drive the miss

distance to zero while minimizing a performance index made up of the integral of the

square of the control. Clearly, the optimal guidance law presents the least miss distance of

the three guidance laws. However, it requires a missile with complex signal processing

capabilities. The homing capabilities of the missile can be dramatically increased by

identifying the target's evasive maneuver and injecting this information into the

APROPNAV (especially for a constant target maneuver) or optimal guidance control

algorithms. The optimal control algorithm guarantees extraordinary performance. Utilizing

optimal guidance, especially against highly responsive targets, can be the difference

between failure and success.

B. RECOMENDATIONS

It is recommended to continue this research by simulating the overall system (i.e.

estimating the 3-D target's evasive maneuver from two consecutive image frames and

injecting this data into the tridimensional missile/target engagement simulation programs

developed in this thesis). The simulations developed in this thesis are very generic and

easily adapted to different conditions (i.e. for systems with different dynamics and initial

conditions). The consequences of the image measurement errors in the target acceleration

estimation and ultimately in the miss distance can be investigated. Finally, it is

recommended that electronic counter measures (ECCM) be added to the target's evasion

maneuver in order to evaluate their effects on the miss distance.
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APPENDIX A - MISSILE/TARGET THREE DIMENSIONAL

SIMULATION USING PROPORTIONAL NAVIGATION GUIDANCE

% Written by: Rui Manuel Alves Francisco

% Date: 14 October 1992

% This Program simulates the terminal phase of a 3-D missile/target

% engagement using classical proportional navigation.

clear

clg

% DEFINE CONSTANTS

dt = .01; % Sampling time

Tf = 100; % maximum simulation time

kmax = Tf/dt+1;

n = 3; % navigation constant

N= [n 0

0 n];

% DEFINE STATE EQUATIONS

% Missile

% Xrn = [xrn = missile's x coordinate

% xxmd = missile's speed (x coordinate)

S% ym = missile's y coordinate

S% ymd = missile's speed (y coordinate)

% zm = missile's z coordinate

-% zmd = missile's speed (z coordinate)]

Am= [0 1 0000

000000
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000100

000000

000001

0000001;

Bm= [000

100

000

010

000

00 1];

% Target

% Xt = [xt = target's x coordinate

% xtd = target's speed (x coordinate)

% yt = target's y coordinate

% ytd = target's speed (y coordinate)

% zt = target's z coordinate

% ztd = target's speed (z coordinate)]

At =[0 10 000

000000

000100

000000

000001

000000];

Bt= [000

100

000

010

000

102



00 1];

% Seeker (Radar)

% Xsk = [betapitch = seeker's pitch angle

% betad_pitch = seeker's pitch angle rate

% beta-yaw = seeker's yaw angle

i % betad-yaw = seeker's yaw angle rate]

Ask [0 1 0 0

-100 -20 0 0

0 0 0 1

0 0 -100 -20];

Bsk=[00

1000

0 0

0 100];

"% Guidance System

"% Xgs = [a.m-pitch = missile's pitch acceleration

% a-ma yaw = missile's yaw acceleration]

Ags = [-1 0

0-1];

Bgs = [10

0 1];

% INITIALIZE STATE VARIABLES (when the missile enters into the terminal

phase of flight)

% Missile

Xm(:,1) = [ 0 % The missile is in a collision triangle

282.8 % with the target when the missile enters into

0 % the terminal phase of flight

1000
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0

47.1339];

% Target

Xt(:,) -- [30000

0

0

1000

500

0];

% DISCRETE REPRESENTATION

[PHim,DELm] = c2d(Am,Bni,dt);

[PHIt,DELt] = c2d(At,Bt,dt);

[PHIsk,DELsk] = c2d(A~sk,Bsk,dt);

[PHIgs,DELgs] = c2d(Ags,Bgs,dt);

%LINE OF SIGHT (LOS) INFORMATION. INITIAL CONDITIONS.

% Missile

"% LAMBDA.m = Missile's LOS from the global coordinate system

"% LAMBDA-rm = [LAMBDA_m_pitch = Missile's pitch LOS angle

% LAMBDA-m-yaw = Missile's yaw LOS angle]

LAMBDA-m(:,l) = [atan2(Xrl(5,1),sqrt(Xm(1,1)A2+Xm(3,1)^)2));

atan2(Xni(3,1),Xm(1,1))];

% Target

"% LAMBDAt = Target's LOS from- the alobal coordinate system

"% LAMBDA.t = [LAvM.JDAt...pitch = Target's pitch LOS angle

0 LAMBDA-k-yaw = Target's yaw LOS angle]

LAMBDA t(:,1) = [atan2(Xt(5,I),sqrt(Xt( 1.1 )A2+Xt(3,1 )A2));

atan2(Xt(3,1),Xt(1,1))];

% LOS from Missile to Target
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"% LAMBDA = LOS from Missile to Target.

"% LAMBDA = [LAMBDApitch = LOS angle in pitch

S% LAMBDA-yaw = LOS angle in yaw],

LAMBDA(:,1) = [atan2((Xt(5,1)-Xrn(5,1)),sqrt((Xt( l,1)-Xm( 1,1))Aý2

+(Xt(3,1)-Xm(3,1))A2));

atan2((Xt(3,1)-Xm(3,1)),abs(Xt(1,1)-Xm(1,1)))];

% MISSILE and TARGET FLIGHT PATH ANGLES INFORMATION

% Missile

%GAMMA.m = [GAMMA_me.pitch = Missile's flight path angle in pitch

"% GAMMA-mreyaw = Missile's flight path angle in yaw]

GAMMA_m(:, 1) = [atan2(Xm(6,1),sqr,(Xm(2,1)A2+Xm(4,1)A2));

- atan2(Y.m(4,1),Xmn(2,1))];

% Target

%GAMMAjt = [GAMMAjt-pitch = Target's flight path angle in pitch

S% GAMMA_t_YAW = Target's flight path angle in yaw]

GA.MMAt(:, 1) = [atan2(Xt(6, 1 ),sqrt(Xt(2, l)A2+Xt(4, i)A2));

atan2(Xt(4,1),Xt(2,1))];

% RANGE INFORMATION

% Missile

% Rm = Missile's range

Rm(1) = sqrt(Xm(1,1)A2 + Xm(3,1)A2 + Xm(5,1)A2);

% Target

% Rt = Target's range

Rt(1) = sqrt(Xt(1,1)A2 + Xt(3,1)A2 + Xt(5,1)A2);

% Missile/Target relative distance

% R = [Rmtx = Missile/Target x coordinate range

S% Rmty = Missile/Target y coordinate range

% Rmtz = Missile/Target z coordinate range
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%o Rmt = Missile/Target relative distance(Rmt=sqrt(RMtXA2+4RMtyA2+RmtZA2))]

Xt(3,1)-Xni(3,1)

Xt(5,1)-Xni(5,1)

,qrt((Xt(l 1,)-X~M(l 1,))A24+.(Xt(3, 1 )-Xm(3, 1))A2+(Xt(5, 1 )-Xni(5, 1.))A~2)];

% VELOCITY INFORMATION

% Missile

% Vm = Missile's Speed

Vm(1) = sqrt(Xm(2, I)A2+Xm(4,lJ)A2+Xm(6,1J)A2);

% Target

% Vt = Target's Speed

Vt( 1) = sq.-t(Xt(2, 1 )A2.iXt(4, 1 )A2+Xt(6, 1 )'2);

% Speed along the pitch and yaw LOS. Pitch and yaw closing speeds

Vt-pitch( 1) = Vt( 1)*cos(LAMNBDA(2,1I)-GAMM,ýAj(2, 1));

Vm~pitch( 1) = Vm( 1)*cos(LAMlBDA(2, 1)-GAMIMA..m(2, 1));

Vc...pitch( 1) = Vm...pitch(l1)*cos(GAMMA...m( 1,1)-LAMBDA( 1,1))

-Vt~pitch(1 )*cos(GAb.fl,&.t( 1, )-LAMBDA( 1,1));

Vt~yaw( 1) = Vt(l1)*cos (GAMMAA t(l 1,));

Vm.~.yaw(1) = Vm(1)*cos(GAMMA-m(1,1));

Vc...yaw( 1) = Vm..yaw(l1)*cos(GAMMA-m(2, 1 )-LAMBDA(2, 1))

-Vt_yaw( 1)*cos(GAMMAAJ(2, 1)-LAMBDA(2, 1));

Vc = [Vc~pitch(l 10-

0 Vc..yaw(1)];

"% SEEKER and GUIDANCE SYSTEM INITIAL CONDITIONS and INPUTS.

"% Seeker

Xsk(:,1) = [10

0

0
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01;
Usk(:, 1) = LAMBDA(:, 1); % Seeker input

% Guidance System

Xgs(:,l) = [0

0];

Ugs(:,1) = N*Vc*[Xsk(2, 1) % Guidance system input

Xsk(4,1)];

%TIME

% Time = Time vector

TIME(l) =0;

% Tgo = Time to go

Tgo(l) = R(4,1)/Vcpitch(1);

% SIMULATE THE SYSTEM

for ti = 0:.25:21.25

for i = l:kmax-1

% Calculate components of the missile's pitch acceleration

a.mx.pitch(i) = -(Xgs(1,i)*sin(LAMBDA(1,i))*cos(LAMBDA(2,i)));

a mypitch(i) = -(Xgs(1 ,i)*sin(LAMBDA( 1 .i))*sin(LAMBDA(2,i)));

a._mzpitch(i) = Xgs(l,i)*cos(LAMBDA(1,i));

% Calculate components of the missile's yaw acceleration

a- mx_yaw(i) = -Xgs(2,i)*sin(LAMBDA(2,i));

a,_my..yaw(i) = Xgs(2,i)*cos(LAMBDA(2,i));

% Compute overall missile acceleration

a_mx(i) = a mxpitch(i)+a rmx_yaw(i);

a-my(i) = a-my..pitch(i)+amy-yaw(i);

a.mz(i) = a._mzpitch(i);

am(:,i) = [a.mx(i)

a-my(i)
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a-mz(i)];

% Compute missile's acceleration magnitude

aa_m(i) = sqrt(amx(i)^2 + a-my(i)A2 + amz(i)A2);

% Generate target's evasive maneuver (we assume that these accelerations, along

% the three cartesian --xis, are estimated using the missile's image processing

% capabilities)

if TIME(i) >= ti/2 % target starts evasive maneuver

a_tx(i) = 3*32.2*sin(GAMMA t(2,i));

a,_ty(i) = 4*32.2*cos(GAMMAJt(2,i));

a.tz(i) = 3*32.2*cos(GAMMAyt(1,i));

else

a.tx(i) = 0.0;

a_.ty(i) = 0.0;

a_tz(i) = 0.0;

end
at(:,i) = [a-tx(i)

a ty(i)

a._tz(i)];

% Compute magnitude of the target's acceleration

a_t(i) = sqrt(atx(i)A2 + aty(i)A2 + a.tz(i)A2);

% Update missile states

Xm(:,i+l) = PfIm*Xm(:,i)+DELm*am(:,i);
% Update target states

Xt(:,i+l) = PHIt*Xt(:,i)+DELt*at(:,i);

% Update seeker states

Xsk(:,i+l) = PHIsk*Xsk(:,i)+DELsk*Usk(:,i);

% Update Guidance System states

Xgs(:,i+l) = PHIgs*Xgs(:,i)+DELgs*Ugs(:,i);
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% Limit yaw and pitch accelerations to 25 Z's

if abs(Xgs(1,i+1)) > 805.0

Xgs(i,i+l) = 805.0 *sign(xgs(i,i+i));

end

if abs(Xgs(2,i+1)) > 805.0

Xgs(2,i+ 1) = 805.0 *sign(Xgs(2,i+ 1));

end

% Update LOS angles

LAMBDA(: ,i+ 1) = [atan2((Xt(5,i+1 )-Xm(5,i+ 1)),sqrt((Xni(l1 i+ I)-Xt(l1,i+l1))A2

+(Xm(3,i+ 1)-Xt(3,i+ I))A2));

Usk(:,i+1) = LAMHDA(:,i+l);.

LAM]3DAni(: ,i+1) = [atan2(Xm(5,i+ 1),sqrt(Xm(l1,i+1 )A2+Xm(34i+ 1)A2));

atan2(Xm(3,i+1),Xm( 1,i+ 1))];

LAMBDA...t(: ,i+ 1) = [atan2(Xt(5 ,i+l1),sqrt(Xt(l1,i+ 1)A2+Xt(3,i+ I)A2));

atan2(Xt(3,i+ I ),Xt(1 ,i+ 1))];

% Update flight path angles

GAMMA..m(: ,i+ 1) = [atan2(Xm(61 i-s 1),sqrt(Xmn(2,i+ 1)A2+Xni(4,i+ )1)'2)),

atan2(Xni(4,i+ 1),Xni(2,i+ 1))];

GAMM~vA_t(: ,i+ 1) =[atan2(Xt(6,i~.i-I)sqrt(Xt(2,i+ 1)A2+Xt(4,j+ 1)A2));

atan2(Xt(4,i-i-1),Xt(2.i+ 1))];

% Update Range Information

Rni(i+1) = sqrt(Xm(1,i+1)A2 + Xzn(3,i+I)A2 + Xn1(5,i+I)Aq2);

Rt(i+1) =sqrt(Xt(1,i+1)A2 + Xt(3,i+1)A2 + Xt(5,i+1)A2);

R(:,i+1) =[Xt(1,i+1)-Xm(J ,i+1);

Xt(3,i+1)-Xrn(3,i+l);

Xt(5,i+ 1)-Xm(5 ,i+ 1);

sqrt((Xt(l1,i+ 1 )-Xrn( 1,i+ I ))A2+(Xt(3,i+ 1 '-Xm(3,i-s 1 ))A2
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+(Xt(5,i-i-)-Xm(5,i+ l))A2)];

% Update Velocity Information

Vm(i+ 1) = sqrt(Xm(2,i+ l)A2+Xni(4,i+ I)A2+Xm(6,i+1)A2);

Vtli+ 1) = sqrt(Xt(2,i+ 1)A2+Xt(4,i+ 1)A2+Xt(6,i+ 1 )'2);

Vt~pitch(i+1) = Vt(i+ 1)*cos(LAMBDA(2,i+lI)-GAMMAJ_(2,i+1 ));

Vm-pitch(i+ 1) = Vm(i+ 1)*cos(LAMBDA(2,i+ 1)-GAMMA-m(2,i± 1));

Vc...pitch(i+ 1) = Vm..pitch(i+l1)*cos(GAMMA..m(l1,i+ l)-LAM'.3DA(l1,i+ 1))

-Vt-pitch(i+l1)*cos(GAMMA t( 1,i-i-)-LA~vfDA( I. ,i 1));

Vt..yaw(i-i- ) = Vt(i+l1)*cos(GAMIMA,_(l1,i+ 1));

Vm...yaw(i+ 1) =Vm(i+ 1)*cos(GAMMA-M( 1,i+ 1));

Vc..yaw(i± 1) =Vni..yaw(i+ 1)*cos(GAMMLA...(,+1)LM A2i )

-Vt_yaw(i+1-)*cos(GAMMvA...t(2,i+ 1)-LAMBDA(2,i+ 1));

Vc =[Vc...pitch(i+ 1) 0

0 Vc...yaw(i+l)];

% Update guidance system input

Ugs(:,i+1) = N* Vc*[Xsk(2,i±1)

Xsk(4,i+ 1)];

% Update Time/time to go

TIME-(i+i-1) = TIME(i)+dt;

T~go(i+ 1) =R(4,i+l1)/Vc..pitch(i+ 1);

% Check for closest point

if (R(4,i) < R(4,i+l)),break~end

end,

% Save information for plotting and evaluation

RlI(4*ti+1) = R(4,i); % miss distance

Ti(4*ti+1) = tiI2;% starting time of evasive maneuver (EM)

tgo(4*ti+1) = i*dt-ti12; % time to go until end of flight

if ti == 12.0 % Record information for a target that
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% initialized the evasive maneuver 6 sec after the missile

% entered into the terminal phase of flight.

TG() = tgo(49);

Xseeker = Xsk(:,1:i);

XgSYS = Xgs(:,1:i);

lambda-m = LAMBDA-m: :)

lambda_t = LANMBDA....t(:, 1: i);

lambda = LANMDA(:,l:i);

gamma..m = GANMM,_m(:,1:i);

gammajt = GAMMIAJ:, 1: i);

r =R(,1 )

vm = Vm(l:i);

vt = V~~)

vm..p itch = Vm...pitch( 1:i);

vt..pitch Vt...pitch(l:i);

vm...yaw =Vm...yaw(1:i);

vt~yaw = Vt~yaw(l:i);

vc...pitch =Vc...pitch(l:i);

vc...yaw =Vc...yaw( 1:i

tGO = Tgo(l:i);

aM = ar(:, 1: i);

aT = at(:, 1: i);

A-t a_t(i:i);

time =TM(:)

end

clear R.

R(:, Xt(1l)-Xm1Ill



Xt(3,1)-Xrn(3,1);

Xt(5, 1)-Xmr(5, 1.);

sqrt((Xt(1, 1)-Xm(l191))A12+(Xt(3, 1)-Xm(3, 1 ))A2+(Xt(5, 1)-XM(5,lI))A2)];

end;

save thesis I p343 R I tgo Ti LGO missile target TGO Xseeker Xgsys lambda-rn

lamnbda,_t lambda gamma-m gammia-t r vm vt vm-pitch vmnyaw vt-pitch

vt~yaw vc...pitch vc...yaw a-M aT time A-t A-m

PLOTS

% Miss distance information

plot(Ti,R1),title('MISS DISTAN4CE vs INITIAL TIME. PROPNAV')

xlabel('IN1TAL TIME - SEC'),ylabel('M1ISS - FEET')

print -dps RlapJ.

!pstoepsi Rlapl.ps Riapl~epsi

pause,clg

plot(tgo,R 1),title('MISS DISTANCE vs TIME TO GO0, PROPNAV')

xlabel('TIM4E TO GO - SEC'),ylabel('M.SS - FEET')

pruint-dps Rlbpl

!pstoepsi Rlbpl.ps Rlbpl.epsi

pause,clg

% Mfissile acceleration information

plot(time,A-m),title('M1ISS ILE ACCELERATION MAGNITUDE vs TIME,

PROPNAV')

xlabel('TIM - SEC'),YiabeL(11 "~E T/S ECA' I

print -dps A..mplI

!pstoepsi A..mp Lps A-mp lepsi

pause,clg

plot(time,X.'gsys( 1,: )),title( 'MISSILE PITCH ACCELERATION vs TIME,

PRO PNAV')
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xlabel(' TIMvE - SEC '),ylabei('FEET!SECA2')

print -dps XgsyslplI

!pstoepsi Xgsys lp l.ps Xgsys lp Lepsi

pause,clg

plat(time,.Xgsys(2,: )) ,title( 'MISSILE YAW ACCELERATION vs TIME,

IPRO PNAV')

xlabel( 'TIMvE - SEC '),ylabel('FEET/SECA2')

print -dps Xgsys2p 1

!pstoepsi Xgsys2p 1.ps Xgsys2pl1.epsi

pause,clg

To Target acceleration information

plot(time,Ajt),title( 'TARGET ACCELERATION MAGNITIUDE vs TIME,

PROPNAV')

x~label('ITIvIE - SEC '),ylabel( 'FEET/S ECA2')

print -dps AtplI

!pstoepsi Ajtpl.ps A...tpl.epsi

pause,clg

01 Seeker pitch and yaw angles

plot(tinie,Xseeker( 1,: )),titie(' SEEKER PITCH ANGLE vs TIME, PROPNAV')

xlabel('TIME - SEC'),ylabel('RAD')

print -dps XseekerlplI

!pstoepsi Xseekerlpl.ps Xseekerlpl.epsi

pause,cig

plot(time,Xseeker(3,:)),title('SEEKER YAW ANGLE vs TIME, PROPNAV')

xlabel('TIME - SEC'),ylabelQ'RAD')

print -dps Xseeker2p I

!pstocpsi Xseeker2pl1.ps Xseeker2pl1.epsi

pause,clg
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plot(time,Xseeker(2,:)),title(' SEEKER PITCH ANGLE RATE vs TIME,

PRO PNAV')

xlabel('TIME - SEC'),ylabe1('RAD/SEC')

print -dps Xseeker3p I

!pstoepsi Xseeker3pl .ps Xseeker3plI.epsi

pause,clS

plot(time,Xseeker(4,:)),title('SEEKER YAW ANGLE RATFE vs TIMjE.

PROPNAV')

xlabel('ITvIvE - SEC').yLabel('RAD/SEC')

print -dps Xseeker4plI

!pstoepsi Xseeker4pl.ps Xseeker4p 1.epsi

pause~clg

% Range information

plot(time,r(4,:)),title('RA'NGE vs TIME, PROPNAV')

xlabel('TfME - SEC'),ylabel('FEE.T')

print -dps rplI

!pstoepsi rpi.ps rpl-epsi

pause,clg

% Missile velocity information

plot(time,vmn),title('MISSI1LE SPEED vs TIME, PROPNAV')

xlabel('TUME - SEC'),ylabel('FEET/SEC')

print -dps vnipI

!pstoepsi vmpl.ps vmpl.epsi

pause,clg

% Target velocity information

plot(time,,.'),dtite( 'TARGE.T SPEED vs TMPROPNAV')

xdabe1('TIME - SEC'),ylabe1C'FEET/SEC')

print -dps vto I
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.pstoepsi vtpl.ps vtpl.epsi

pause,clg

% Closing velocity information

plot(time,vc~pitch),title( 'PITCH CLOSING SPEED, PROPNAV')

xl~abel( 'TIMEF - SEC ),ylabel( 'FEET/SECt)

print -dps vclpl

!pstoepsi vclpl.ps vclpl.epsi

pause,clg

plot(time,vc-yaw),title('YAW CLOSING SPEED vs TIME, PROPNAV')

xlabel('TIME - SEC'),ylabel('FEE'I/SEC')

print -dps vc2plI

!pstoepsi vc2pl.ps vc2pl.epsi

pause,clg
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APPENDIX B - MISSILE/TARGET THREE DIMENSIONAL

SIMULATION USING AUGMENTED PROPORTIONAL NAVIGATION

GUIDANCE

"% Written by: Rui Manuel Alves Francisco

"% Date: 10 November 1992

"% This Program simulates the terminal phase of a 3-D missile/target

"% engagement using augmented proportional navigation guidance.

clear

clg

% DEFINE CONSTANTS

dt = .01; % Sampling time

Tf = 100; % maximum simulation time

kint Y, = Tf/dt+l;

n =3; % navigation constant

N= [nO

0 n];

"% DEFINE STATE EQUATIONS

"% Missile

"% Xm = [xm = missile's x coordinate

% xmd = missile's speed (x coordinate)

% ym = missile's y coordinate

% ymd = missile's speed (y coordinate)

% zm = missile's z coordinate

% zmd = missile's speed (z coordinate)]

Am = [0 10 0 0 0
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000000

000100

000000

000001

0000001;

Bm=[000

100

000

010

000

00 1];

% Target

% Xt = [xt = target's x coordinate

% xtd = target's speed (x coordinate)

% yt = target's y coordinate

% ytd = target's speed (y coordinate)

% zt = target's z coordinate

% ztd = target's speed (z coordinate)]

At= [0 1 0000

000000

000100

000000

(100001

000000];

Bt=[000

100

000

010
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000

0 0 1];

% Seeker (Radar)

% Xsk = [beta.pitch = seeker's pitch angle

0/ betad&pitch = seeker's pitch angle rate

% beta-yaw = seeker's yaw angle
% betad-yaw = seeker's yaw angle rate]

Ask =[0 1 0 0

-100 -20 0 0

0 0 0 1

0 0 -100-20];

Bsk=[00

100 0

0 0

0 100];

"% Guidance System

"% Xgs = [a-m.pitch = missile's pitch acceleration

% a.m-yaw = missile's yaw acceleration]

Ags= [-10

0 -1];

Bgs = [10

0 1];

% INITIALIZE STATE VARIABLES (when the missile enters into the terminal

phase of flight)

% Missile

Xni(:,1) = [ 0 % The missile is in a collision triangle

2828 % with the target when the missile enters into

0 % the terminal phase of flight
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1000

0

47.1339];

% Target

Xt(:. 1) = [30000

0

0

100011

500

01;

% DISCRETE REPRESENTATION

[PHIm,DELm] = c2d(Am,Bm,dt);

[PH~t,DELt] = c2d(At,Bt,dt);

LPH~sk,DELskI = c2d(Ask,Bsk,dt);

[PHIgs,DELgs] = c2d(Ags,Bgs,dt);

% LINE OF SIGHT (LOS) INFORMATION. INITIAL CONDITIONS.

% Missile

"% LAMBDA~m = Missile's LOS from the global coordinate system

"% LAMB8DA...m = [LAMBDA-mnpitch =Missile's pitch LOS angle

%LAMBDA...m..yaw =Missile's yaw LOS angle]

LAMBDA m(: ,l) = [atan2(Xm(5, 1),sqrt(Xm( 1,1 )A2-+Xm(3, 1)A2));

atan2(Xm(3, 1),Xn(1, 1))];

% Target

% LAMEDA-t = Target's LOS from the global coordinate system

% LAMBDA.t = [LAN BDA....pitch =Target's pitch LOS angle

% LAMBDA-tyaw =Target's yaw LOS angle]

LAMvBDA-t(:, 1) = [atan2(Xt(5, 1),sqrt(Xt(1,1 I)A2+Xt(3, 1 )A2));

atan2(Xt(3,1),Xt( 1,1))];
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"% LOS from Missile to Target

"% LAMBDA = LOS from Missile to Target.

% LAMBDA = [LAMBDA pitch = LOS angle in pitch

% LAMBDAyaw = LOS angle in yaw];

LAMBDA(:, 1) = [atan2((Xt(5, I)-Xm(5, 1)),sqrt((Xt( 1, l)-Xm( 1, 1))A2

+(Xt(3, 1)-Xm(3, 1))A2));

atan2((Xt(3, 1)-Xrn(3,1 )),abs(Xt(1,1 )-Xm( 1, i )))];

"% MISSILE and TARGET FLIGHT PATH ANGLES INFORMATION

"% Missile

%GAMMAm = [GAMMA~m.pitch = Missile's flight path angle in pitch

% GAMMAjmnyaw = Missile's flight path angle in yaw]

GAMMA..m(:, 1) = [atan2(Xm(6, 1),sqrt(Xm(2,1)A2+Xm(4,1)A2));

atan2(Xrm(4,1),Xm(2,1))]]:

% Target

%GAMMAt- [GAMMA-t..pitch = Target's flight path angle in pitch

% GAQMAtYAW = Target's flight path angle in yaw]

GAMMAvt(:, 1) = [atan2(Xt(6, 1),sqrt(Xt(2, 1)A2+Xt(4, I)^2));

atan2(Xt(4,l),Xt(2,1))];

"% RANGE INFORMATION

"% Missile

"% Rm = Missile's range

Rm(1) = sqrt(Xm(1,1)A2 4. Xm(3,1Y)2 + Xm(5,i)A2);

% Target

% Rt = Target's range

Rt(1) = sqrt(Xt(1,1)A2 + Xt(3,1)A2 + Xt(5,1)A2);

"% Missile/Target relative distance

"% R = [Rmtx = Ivissile/fTarget x coordinate range

% Rmty = Missile/Target y coordinate range
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% Rmtz = Missile/Target z coordinate range

% Rmt = Mfissile/T'arget relative distance(Rmt=sqrt(RrntXA2+RmtyA2+RmtZA2))]

Xt(3,1)-Xm(3, 1)

Xt(5,l)-Xin(5, 1)

sqrt((Xt(1 , l)-Xnj( 1, 1))A2+(Xt(3,1 )-Xm(3, 1))A2+(Xt(5, l)-Xni(5, 1))A2)];

"% VELOCITY INFORMATION

"% Missile

"% Vmi Missile's Speed

Vm( 1) =sqrt(Xm(2, 1)A2+Xm(4, l)A2+Xmn(6, l)A2);

% Target

% Vt =Target's Speed

Vt( 1) = sqrt(Xt(2,I1)A2+Xt(4,I1)A2+Xt(6, I),'ý2);

% Speed along the pitch and yaw LOS. Pitch and yaw closing speeds

Vt...pitch( 1) = Vt( I)*cos(LAMB DA(2&, 1)-GAMMAjt(2, 1));

Vni..pitch( 1) = Vm( 1)*cos(LAMBDA(2, 1)-GAMM4A-n(2, 1));

Vc..pitch( 1) = Vm...pitch(l1)*cos(GAMMA...m(l1.1)-lAMBDA( 1,1))

-Vt...pitch() 1*cos (GAMVMAJt(l 1, -LAMB DA( 1, 1));

Vt..yaw(1') = Vt(l1)*cos(GAMMA...t(l 1I));

Vm..yaw( 1) = Vm( 1)*cos(GAMM4A..m( 1,1));

Vc..yaw( 1) = Vm~yaw( I)*cos(GAMMA -M(2, 1 )-LAMBDA(2, 1))

*Vt~yaw(l1)*cos(GAMMA t(2, i.)-LAMBDA(2, 1));

Vc = [Vc...pitch( 1) 0

0 Vc-yaw(l)];

5o SEEKER and GUIDANCE SYSTEM INiTAL CONDITIONS and INPUTS.

% Seeker

Xsk(.,i.) = [0

0
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0

011;

Usk(:,1) = LAMBDA(:,1); % Seeker input

% Guidance System

Xgs(:A,) = [0

0];

Ugs(:, 1) = N* Vc* [Xsk(2,1) % Guidance system input

Xsk(4,1)];

% Initial conditions of the target's acceleration

a_tx(l) = 0;

a-ty(1) = 0;

a_tz(1) = 0;

at(l) =0;

a tpitch(l) =0;

a_t_.yaw(1) = 0;

TETAjt(i) = 0; % angle between the acceleration vector and the yaw plane

PHI_t(l) = 0; % yaw angle of the target's acceleration vector

%TIME

% Time = Time vector

TIME(1) = 0;

% Tgo = Time to go

Tgo(1) = R(4, l)fVc..pitch(l);

% SIMULATE THE SYSIEM

for ti = 0:.25:21.25

for i = l:kmax-l

% Calculate components of the missile's pitch acceleration vector

a_mx pitch(i) = -(Xgs(l,i)*sin(I,AMBDA(1,i))*cos(LAMBDA(2,i)));

a._mypitch(i) = -(Xgs(1,i)*sin(LAMBDA(1,i))*sin(LAMBDA(2,i)));
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a-mzpitch(i) = Xgs(1,i)*cos(LAMBDA(1,i));

% Calculate components of the missile's yaw acceleration vector

a_mxyaw(i) = -Xgs(2,i)*sin(LAMBDA(2,i));

a-my-yaw(i) = Xgs(2,i)*cos(LAMBDA(2,i));

% Compute overall missile acceleration components

a_mx(i) = amxpitch(i)+amxyaw(i);

amy(i) = a mypitch(i)+a.myyaw(i);

amz(i) = a_mz..pitch(i);

am(:,i) = [amx(i)

a-my(i)
a__mz(i)];

% target acceleration vector

at(:,i) = [ajtx(i)

ajty(i)

a-tz(i)];

% Compute magnitude of the missile's acceleration

a_m(i) = sqrt(a_,nx(i)A2 + amy(i)A2 + a.mz(i)A2);

"% Generate target's evasive maneuver (we assume that these accelerations, along

"% the three cartesian axis, are estimated using the missile's image processing

% capabilities)

if TIME(i) >= ti/2 % target starts evasive maneuver

a_tx(i+l) = 3*32.2*sin(GAMIA-t(2,));

a_ty(i+l) = 4*32.2*cos(GAMMA_t(2,i));

a_tz(i+l) = 3*32.2*cos(GAMMA_t(1,i));

else

a_tx(i+l) = 0.0;

a_ty(i+1) = 0.0;

a_tz(i+l) = 0.0;

123



end

% Compute magnitude of the target's acceleration

a~t(i+ 1) = sqrt(ajtx(i+l1)A2 + a-.ty(i+1)A2 + a- .tz(i+1)A2);

01 Update missile states

Xm(:,i+1) = PHIn1*Xm(:,i)+DELm*am(:,i),

% Update target states

Xt(:,i+ 1) = PHIt*Xt(: ,i)+DE-Lt*at(:,i);

% Update flight path angles

GAMMA-m(: ,i+ 1) = [atan2(Xm(6,i+l1),sqrt(Xm(2,i+ 1)A2+Xm(4,i+ I)A2)),

atan2(Xm(4,i+. 1),Xrn(2,i+ 1))];

GA.MMAA,.t(: ,i+ 1) =[atan2(Xt(6,i+ I),sqrt(Xt(2,i+ l)A2+Xt(4.i+ I)A2));

atan2(Xt(4.i+ 1),Xt(2,i+l1))];

% Update seeker" states

Xsk(:,i+1) = PHIsk*Xsk(:,i).4DELsk*Usk(:,i),

% Update Guidance System states

Xgs(:,i+1) = PAIgs*Xgs(:,i)+DELgs*Ugs(: 4);

% Limfit yaw and pitch accelerations to 25 g's

if abs(Xgs(1,i+1)) > 805.0

Xgs(1,i+l) = 805.0 *sign(Xgs(l,i+l));

end

if abs(Xgs(2,i-il)) > 805.0

Xgs(2,i+1) = 805.0 *sign(Xgs(2,i+l));

end

% Update LOS angles

LANvSDA(:,i+ 1) = [atan2((Xt(5.i+ I)-Xm(5,i+1)),sqrt((Xm( 1 ,i+l1)-Xt(l1i+1l))A2

i-(Xm(3,i+l )-Xt(3,i+l1))A2));

ata12((Xt(3,i+l)-Xm(3,i+l1)),(abs(Xm(lI,i+l )-Xt(l i+1))))]-,

Usk(:,i+l) = ,ANIMBDA(:,i+l);
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LA:NBDA-m(: 4+1) = [atan2(Xm(5,i+ 1),sqrt(Xm(l14+ l)A2.IFXm(3,i+ )A2));

atan2(Xm(3,i+1),Xm(1 ,i+ 1))];

LAMI3DA-t(:,i+1) = [atan2(Xt(5,i+1 ),sqrt(Xt( I,i+ 1)A2+Xt(3,i+ I)A2));

atan2(Xt(3,i+ 1 ),Xt(lI,i+ 1 ))];

% Update Range Information

Rm(i+1) = sqrt(Xm(l,i+1)A2 + Xrn(3.i+1)A2 + XM(5,i+I1)A2);

Rt(i+li) =sqrt(Xt(1,i+ J)A2 + Xt(3,i+1J)A2 + Xt(5,i+1J)A2);

Xt(3,i+1)-Xm(3,i+1);

Xt(5,i+1)-Xrn(5,i+I)-,

+(Xt(5,i+ 1)-XM(5,i+ 1))A2)];

%Update Velucity Information

Vm(i+ 1) .. sqrt(Xm(2,i-+.1)A24.Xn(4,i+1 )A2+Xm(6,i+ 1)A2);

Vt(i+ 1) = sqrt(Xt(2,i+ 1 )A2+Xt(4,i+ 1)A2+Xt(6,i+ I )'2);

VL..pitch(i+ 1) = Vt(i+l1)*cos(LAMBDA(2,i+ 1)-GAMMA t(2,i+ 1));

Vm..pitch(i+1) =Vm(i+ 1)*cos(LAMBDA(2,i~el1)-GAMMA_m(2,i+ 1));

Vc..pitch(i+ 1) =Vm..p~itch(i+ 1) *cos(GAMMvA-M( I,i+ I )- LAMB DA(, 1 i+ 1))

-Vt..pitch(i+1 )*cos(GAMMA~dt(l1,i+lI)-L.AMBDA(lI,i+ 1));

Vt.yaw(i+ 1) = Vt(i+ 1)*cos(GA1MivAjt(lI,i+ 1));

Vm...yaw(i+ 1) = Vm(i+ I)*cos(GAMMA-m( 1,i+1 ));

Vc...yaw(i+ 1) = Vm...yaw(i+ 1)*cos(.GAMMNA m(2,i+ 1)-LANMDA(2,i+ 1))

-Vt..yaw(i... )*cos(GAMM4A t(2,i+I)-LAMIBDA(2,i+1 ));

Vc = [Vc..pitch(i+ 1) 0

0 Vc-yaw(i+1)];

% Calculate angles of the target's acceleration

TETA-t(i~i- ) = atan2(a tz(i-i 1),sqrt(ajtx(i+l1)'-2+aj y(i- 1 )A2));

PHI-It(i+1) = atau12(a...ty(i+l),a...tx(i+l));
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% Calculate the components of the target's acceleration normal to the LOS

a...t..pitch(i+ 1) = -a...t(i+l1)*cos(LAMBDA(2 ,i+l1)-PHIJt(i+ 1))

*sin(LAM4BDA(l1,i+l )-TETA~t(i+ 1));

a~t~yaw(i+ 1) = -a...t(i+l1)*cos(TETAJt(i+ 1))'*sin(LA.vMBDA(2,i+l1)-PHIjt(i± 1));

% Update guidance system input

Ugs(:,i-il) = N*(Vc*[Xsk(2,i+l);Xsk(4,i+l)]

+.5*[aj...pitch(i+l1);a...syaw(i+ 1)]);

% Update Time/time to go

TlME(i.~l) = TIME(i)+dt;

Tgo(i+ 1) = R(4.i+ 1)/Vc..pitchi(i+ 1);

% Check for closest point

if (R(4,i) < R(4,i+1)),break,end

end;

% Save information for plotting and evaluation

Rl(4*ti+1) =R(4,i); % miss distance

Ti(4*ti+1) = ti/2;% starting timne of evasive maneuver (EM)

tgo(4*tiA+1) = i*dt-ti/2; % time to go until end of flight

if ti == 12.0 % Record information for a target that

% initialized the evasive maneuver 6 sec

% after the missile entered into the terminal

TOO = tgo(49); % phase of flight

Xseeker = Xsk(:,1:i);

Xgsys = XgrS(:;i:i);

lambda-in LAMBDA-m(:,1:i);

lambda_t = LAMB DAt(,1 )

lambda = LANMDA(:,1:i);

gamnma-m = GAMMA..m(:, 1: i);

gamma-t = GAMMAjt(:,1:i).
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r = (,i)

vm = Vm(1:i);

vt= Vt(l:i);

vm~pitch = Vm..pitch( 1:i

vt~pitch =Vt..pitch(1:i);

vm...yaw =Vm...yaw(1 :i);

vt..yaw =Vt~yaw(l:i);

vc..pitch = Vc~pitch(l :i);

vc...yaw = Vc...yaw(1:i);

tGO Tgo(l:i);

a = m: ~)

a-T =at(:, 1: i);

A-t a-t(l: i);

A-rm am(1:i);

time TEIAvE(l:i);

end

clear R;

Xt(3, 1)-Xm(3, 1),

Xt(5,1)-Xm(5,1),

sqrt((Xt( 1, 1)-Xzn(l 1,))A2+(Xt(3, 1 )-Xm(3, 1 ))A2+(Xt(5, 1 )-Xm (5, 1))A2)];

end;

save thesis~."4 R1go T i 'LGT xu issIile target -1 G 0Aseeker Xgs ys lamouda m

lambda-t lambda gamma-M gamma-t r vmn vt vm-pitch vrniyaw vt~pitch

vt~yaw vc~pitch vc-yaw aM a-T time A_t A-m

PLOTS

% Miss distance information

plot(TiR 1),title('MISS DISTANCE vs INITIAL TIME, A.PROPNAV')
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xdabel('INITIAL TIME - SEC'),ylabelICNUSS - FEET')

print -dps RlIaalI

!pstoepsi Rlaal.ps Rlaal.epsi

pause,clg

plot(tgo.Rl1),title('MISS DISTANCE vs TIMIE TO GO, APROPNAV')

xlabel('TIME TO GO - SEC'),ylabel('MIfSS - FEET')

print -dps Ribal

!pstoepsi Rlbat.ps Ribal~epsi

pause,clg

% Mfissile acceleration information

plot(tinie,A&m),title('M[ISSILE ACCELERATION MAGNITUDE vs TIMIE,

APROPNAV')

xlabel( 'TIME - SEC'),ylabe1(CFEET/SECA2')

print -dps A-.Mal

!pstoepsi A-Mal.ps A-mal.epsi

pause,clg

plot(time,Xgsys( 1,:)) ,title('MISSILE PITCH ACCELERATION vs TIME,

APROPNAV')

xlabel('TIME - SEC'),ylabel('FEET/SECA2')

print -dps Xgsyslal

!pstoepsi Xgsyslal.ps Xgsyslal.epsi

pause~clg

AiPROPNAV')

xlabel('TDME - SEC'),ylabel('FEET/SECA2')

print -dps Xgsys2al

!pstoepsi Xgsys2al .ps Xgsys2al epsi

pause,clg
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% Target acceleration information

plot(time,AJt),title('TARGEFT ACCELERATION MAGNITUDE vs TIME,

APROPNAV')

xlabel('TLME - SEC ') ,ylabel( 'FEET/S ECA2')

print -dps A-tal

!pstoepsi Ajtai.ps A-tal.epsi

pause,clg

% Seeker pitch and yaw angles

plotL(time,Xseeker( 1,: )),title( 'SEEKEK PITCH ANGLE vs TIME,APROPNAV')

xlabel('TIME - SEC'),ylabel('RAD')

print -dps Xseekerlal

!pstoepsi Xseekerl1a l.ps Xseeker is 1.epsi

pause,clg

plot(time,Xseeker(3,:)),title('SEEKER YAW ANGLE vs TIME, APROPNAV')

,clabel('TIIME - SEC'),ylabel('R.AD')

print -dps Xseeker2al

!pstoepsi Xseeker2al .ps Xseeker2al .cpsi

pause,clg

plot(time,Xseeker(2,:)),title('SEEKER PITCH ANGLE RATE vs TIMIE.

APRCPNAV')

xlabel('TIME - SEC'),ylabcl('RAD/SEC')

print -dps Xseeker3al

!pstoepsi Xisekera.ps Xs~eeIeL al.epsil

pause,clS

plot(time,Xseeker(4,:)),tit1-.('SEEKER YAW ANGLE RATE vs TIME,

APROPNAV')

xlabel('TIME - SEC'),ylabel('RAD,/SEC')

print -dps Xseeker4al
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!pstoepsi Xseeker4al .ps Xseeker4al.epsi

pause,clg

% Range information

plot(tirne,r(4,: )), title ('RANGE vs TIMIE, APROPNAV')

xlabel('T]ME - SEC'),ylabel('FEET')

print -dps ral

!pstoepsi rai~ps ral.easi

pause,clg

% Mlissile velocity information

plot(time~vm),title('MISSILE SP'EED vs TINME, APROPNAV')

xlabeW('TIME - SEC ') ,ylabel('FEET/SEC')

print -dps vmal

!pstoepsi vmal.ps vmal.epsi

pause,clg

% Target velocity information

plot(tixne,vt),title('TARGE-T SPEED vs TIYM, APROPNAV')

xlabel('TTME - SEC '),ylabel('FEET/SEC')

print -dps vtal

!pstoepsi vtal.ps vtal.epsi

pause,clg

% Closing velocity information

plot(tinie,vc..pitch),title( 'PITCH CLOSING SPEED,APROPNAV')

xliabei(iTrVIE - S-'EC-),ylabe ('FEE T/SEC')

print -dps vclIalI

!pstoepsi vclal.ps vcial.epsi

I, pause~clg

plot(time,vc~yaw),title('YAW CLOSING SPEED vs TIME, APROPNAV')

xiabel('TIME - SEC'),yl1at~el('FEET/SEC')
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print -dps vc2al

!pstoepsl vc2al.ps vc2al.epsi

pause,cilg
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APPENDIX C - MISSILE/TARGET THREE DIMENSIONAL

SIMULATION USING OPTIMAL GUIDANCE

% Written by: Rui Manuel Alves Francisco

% Date: 09 December 1992

% This Program simulates the terminal phase of a 3-D missile/target

% engagement using optimal guidance.

clear

cig

% DEFINE CONSTANTS

dt= .01; % Sampling time

"Tf = 100; % maximum simulation time

kmax = Tf/dt+ 1;

% DEFINE STATE EQUATIONS

% Missile

% Xm = [xrm = missile's x coordinate

% xmd = missile's speed (x ,-oordinate)

% ym = missile's y coordinate

% ymd = missile's speed (y coordinate)

% zm = missile's z coordinate

% zmd = missile's speed (z coordinate)]

Am =[010000

000000

000100

000000

000001
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000000];

Bm = [000

100

000

010

000

001];

% Target

% Xt = [xt = target's x coordinate

% xtd = target's speed (x coordinate)

% yt = target's y coordinate

% ytd = target's speed (y coordinate)

% zt - target's z coordinate

% ztd = target's speed (z coordinate)]

At= [0 1 0000

000000
000100

000000

000001

000000];

Bt 000000

100

000

010

000

0 0 1];

% Seeker (Radar)
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% Xsk = [beta...pitch = seeker's pitch angle

% betad-pitch = seeker's pitch angle rate

% betayaw = seeker's yaw angle

% betad.yaw = seeker's yaw angle rate]

Ask =[0 1 0 0

-100 -20 0 0

0 0 0 1

0 0 -100 -201;

Bsk =[0 0

100 0

0 0

0 100];

"% Guidance System

"% Xgs = [am..pitch = missile's pitch acceleration

% a-m-yaw = missile's yaw acceleration]

Ags = [-10

0 -1];

Bgs = [10

0 1];

% INITIALIZE STATE VARIABLES (when the missile enters into the terminal

phase of flight)

% Missile

Xm(:,1) = [ 0 % The missile is in a collision triangle

2828 % with the target when the missile enters into

0 % the terminal phase of flight

1000

0
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47.1339];

% Target

Xt(:,1) =[30000

0

0

1000

500

0];

% DISCRETE REPRESENTATION

[PHImDELm] = c2d(Ani,Bm,dt);

[PH-It,DELtj = c2d(At,Bt,dt);

[PfIIsk,DELsk] = c2d(Ask,Bsk,dt);

[PHIgs,DELgs] = c2d(Ags,Bgs,dt).

"% LINE OF SIGHT (LOS) INFORMATION. INITIAL CONDITIONS,

"% Missile

"% LAMBDAjii = Missile's LOS from the globai coordinate systtm

"% LAMBDA...m = [LAMBDAm_m.pitch = Missile's pitch LOS angle

LAMBD~m.-yaw = Missile's yaw LOS ange

LAMBDA mn(. ) = [atan2(Xrn(5, 1 ),sqrt(Xm( 1,1)A2+XM(3,l1)A2));

atan2 (X~m(3,I1),Xm(1, 1))];

% Target

"% LAMBDA....t = Target's LOS from the global coordinate system

"% LAMBDA-t = [LAMIBDAL-pitch = Target's pitch LOS angle

% LAMBDA-t-yaw =Target's yaw LOS angle]

4 ~LAMvBDA~t(:, 1) = [atan2(Xt(5, l),sqrt(Xt( 1, 1)A24.Xt(3, 1)A2));

atan2(Xt(3,1),Xt( 1,1))];

% LOS from Missile to Target

% LAMBDA = LOS from Missile to Target.
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S% LAMBDA = [LAMBDApitch = LOS angle in pitch

% LAMBDAyaw = LOS angle in yaw];

LAMB DA(:, 1 ) = [atan2 ((Xt(5,1)-X.m(5,1)),sqrt((Xt( 1,1 )-Xm( 1,1 ))^2
+(Xt(3,1)-Xm(3, !))^2));Q

atan2((Xt(3,1)-Xm(3,1)),abs(Xt(1,1)-Xm(1,1)))];

% MISSILE and TARGET FLIGHT PATH ANGLES INFORI•qATION

% Missile

%GAMMAm = [GAMMAm_.pitch = Missile':, flight path angle in pitch

% GAMMAmyaw = lv'fissile's flight par.h angle in yaw]

SGAMMAm(:, 1) = [atan2(Xm(6,1),sqrt(Xa'n(2,i)A2+Xm(4,1)^2)); -

Satan2(Xm(4,1),Xm(2, I))];
-'-•M Target

%GAMMAt = [GAMMAtpitch = Target's flight path angle in pitch
-• % GAMMAtYAW = Target's flight path angle in yaw]

GAMMAt(:, 1) = [atan2(Xt(6,1),sqrt(Xt(2,1)^2+Xt(4,1)^2));

ata.ti2(Xt(4,1),Xt(2,1))];

% RANGE INFORMATION

°2'0 Missile
% Rm = Missile's range
Rm(1) = sqrt(Xm(ll)^2 + Xm(3,1)^2 + Xm(5,1)^2);

i % Target

! % Rt = Target's range

SRt(1) = sqr•(Xt(1,1)^2 + Xt(3,1)^2 + Xt(5,1)^2);

% Missile/Target relative distance

• % R = [Rmtx = Missil^/Target x coordinate range ,

S% Rm• = Missile/Target y coordinate range

!/ % Rmtz = Missile/Target z coordinate range
^ ^ A

Rmt = Missile/Target relative distanc•(Rmt=sqrt(Rmtx 2+Rmty 2+Rmtz 2))]
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Xt(3,1)-Xm(3.1)

Xt(5,l)-Xm(5,l)

Sqrt((Xt(1, 1 )-Xrn(l 1,))A2.4(Xt(3, 1 )-Xm(3, 1 ))A2+(Xt(5, 1 )-Xm(5, 1 ))A2)],

* T'o VELOCITY INFORMATION

%, Missile

01o Vmn Missile's Speed

Vm( 1) =sqrt(Xni(2, I)A2+Xrn(4, 1 )A2+XTm(6, I)'A2);

01o Target

01b Vt = Target's Speed

Vt( 1) = Sqrt(Xt(2, 1)A2+Xt(4, 1)A2+Xt(6 1 )A2);

%o Speed along the pitch and yaw LOS. Pitch and yaw closing speeds

Vt..pitch( 1) = Vt( 1)*cos(LANMDA(2,l1)-GAI4MA..t(2, 1));

Vm..pitch( 1) =Vm( 1)*cos(LAMJ3DA(2, 1)-GAMMA...r(2, 1));

Vc..pitch(Q1 Vni..pitch() 1*cos(GAM4MA.m (1, 1) )-LAMB DA(l 1,))

-Vt~pitch( 1)*cos (GAMMA .. t(l I,)- LAMB DA(l 11));

Vt...yaw(1) = Vt(l1)*cos(GAMM4A...t(l 11));

Vm...yaw( 1) = Vm(l1)*cos(GA.1VMA....l( 1I));

Vc...yaw( 1) = Vrnyaw( 1)*cos(GAM4MAjn(2,l1)-LAMBDA(2, 1))

-VL...yaw( 1)*cos(GAMIMAJt(2 1 )-LAMBDA(2, 1));

Vc = jjVc...pitch(1) 0

0 Vc~yaw(1)];

01o Tgo = Time to go

Tgo(1) = R(4,1)/Vc~pitch( I);

016 Optimal guidance coefficients

k= Tgo(1);

ai = (6*kA2*(exp(-k)- 1+k))/(2*kA3+3+6*k-6*kA2 1 2*k~exp(-k)-3*exp(-2*k));

N = n 0
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0 n];

% SEEKER and GUIDANCE SYSTEM INITIAL CONDITIONS and INPUTS.

% Seeker

Xsk(:,) = [0
0

0

0];

Usk(:,1) = LAMBDA(:, l); % Seeker input

% Guidance System

Xgs(:,1) = [0

01;

Ugs(.:) = N*Vc*[Xsk(2,1) % Guidance system input

Xsk(4, 1)];

% Ihitial conditions of the target's acceleration

a_tx(l) = 0;

a_ty(1) = 0;

a_tz(l) = 0;

a_t(1) =0;

a_ t_pitch(l) =0;

a_t_.yaw(1) =0;

TETAJt(l) = 0; % angle between the acceleration vector and the yaw plane

PHIjt(1) = 0; % yaw angle of the target's acceleration vector

% Initial conditions of the missile's acceleration

a- rnmpitch(l) = 0;

a_m_yaw(1) = 0;

%TIVE

% Time = Time vector

TIME(l) = 0;
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% SIMULATE THE SYSTEM

for ti = 0:.25:21.25

Afor i = 1:kmax-1

% Calculate components of the missile's pitch acceleration vector

ajmx_pitch(i) = -(Xgs( i ,i)*sin(LAMB DA( 1 ,i))*cos(LAMBBDA(2,i)));

a_mypitch(i) = -(Xgs(1 ,i)*sin(LAMBDA( 1 ,i))*sin(LAMBDA(2,i)));

a_mz.pitch(i) = Xgs(I,i)*cos(LAMBDA(1,i));

% Calculate missile's yaw acceleration vector components

a_mx yaw(i) = - Xgs(2,i)*sin(LAMBDA(2,i));

a_myyaw(i) = Xgs(2,i)*cos(LAMBDA(2,i));

% Compute overall missile acceleration

a_mx(i) = a mx..pitch(i)+anix._yaw(i);

amy(i) = a.my..pitch(i)+amy..yaw(i);

a_i..mz(i) = amz..pitch(i);

am(:,i) = [aremx(i)

amy(i)
a-mz(i)];

% target acceleration vector

at(:,i) = [a_tx(i)

a_ty(i)

a_tz(i)];

% Compute magnitude of the missile's acceleration

a.--. sqi) = s.-t(,,,-(i) - + a_,,,y si)A2 + ... ,,'(i ) ,

"% Generate target's evasive maneuver (we assume that these accelerations, along

% the three cartesian axis, are estimated using the missile's image processing

"% capabilities)

if TIME(i) >= ti/2 % target starts evasive maneuver

a_tx(i+l) = 3*32.2*sin(GAMLMAt(2,i));
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ajty(i+1) = 4*32.2*cos(GAMMA-t(2,i));

a-tz(i+ 1) =3*32.2*cos(GAMIMAJt(1 ));

else

a...tx(i+1) = 0.0;

a-ty(i+1) = 0.0;

a~tz(i+l) = 0.0;

end

% Compute magnitude of the target's acceleration

ajt(i+l) = sqrt(ajtx(i+1)A2 + ajty(i+1)A2 + a- z(i+1)A2);

% Update missile states

Xm(:,i+1) = PHIm*Xm(:,i)+DELn'*ani(:,i),

% Update target states

Xt(:,i+1) = PHlt*Xt(:,i)+DELt*at(:,i);

%l Update flight path angles

GAMMA...n(: ,i+ I) = [atan2(Xm(6,i+ 1),sqrt(Xm(2,i+ 1)A2+Xrn(4,i+ 1)A2));

atan2(Xm(4,it.l),Xm(2,i+1 ))];

GANMfA~t(: ,i+ I) =[atan2(Xt(6,i+ 1),sqrt(Xt(2,i.+1)A2+Xt(4,i+ 1)A2));

atan2(Xt(4,i+ 1 ),Xt(2,i+ 1))];

% Update seeker states

Xsk(:,i+1) = PHIsk*Xsk(:,i)+DEI~sk*Usk(:,i);

% Update Guidance System states

.Xgs(: ,i+1) = Ffflgs*Xgs(: ,i)+DELgs*Ugs(: ,i);

%o Limnit yaw and piLch accelerations to 25 g's

if abs(Xgs(1,i+1)) > 805.0

Xgs(1,i+1) = 805.0 *sign(xgs( l,i+1));

end

if abs(.Xgs(2,i+ 1)) > 805.0

Xgs(2,i± 1) = 805.0 *sign(Xgs(2,i+ 1));
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end

% Update LOS angles

LAIVBDA(:,i+1) = [atan2((Xt(5,i+1)-Xxn(5,i+l)),sqrt((Xm( 1,i4. )-Xt(1,i+l))A2

+(Xm(3,i+ 1)-Xt(3,i± 1))A2));,

atan2((Xt(3,i+ 1)-Xm(3,i+l)),(abs(Xm(l1,i+ 1)-Xt( 14+1))))];

Usk(:,i+1) = LANMDA(:,i+1);

LAMvBDA...m(:,i+l) = [atan2(Xm(5,i+1),sqrt(Xm(1 ,i+1)A2±Xma(3,i+1)A2));

atan2(Xmn(3,i+1),Xni(l1,i+ 1))];

LAMVB DA-..t(:J +1) = [atan2(Xt(5 ,i+ i),sqrt(Xt(l1,i+ 1)A2-I.Xt(3,i+ I )A2));

atan2(Xt(3,i+ 1),Xt(i,i+ 1))];

% Update Range Information

Rm(i+1) = sqrt(Xrn(1,i+1)A2 + Xrn(3,i+1)A2 + Xm(5,i+1)A2);

Rt(i+1) =Sqrt(Xt(1,i+l)A2 + Xt(3,i+1)',2 + Xt(5,i+1J)A2);

R(:,i+1) =[Xt(1,i+1)-Xxn(1,i+1);

Xt(3,i+ 1)-Xm(3,i+ I);

Xt(5,i+lI)-Xrn(5,i+ 1);

sqrt((Xt( 1,i+l1)-X~rn(l14+1 ))A2+(Xt(3,i+ 1 )-Xrn(3,+ J.))A2

+(Xt(5,i+ 1)-Xm(5,i+ 1))A2)];

% Update Velocity Information

Vm(i+ 1) = sqrt(Xmn(2,i+ 1)A2+Xm(4,i+ 1)A2+,Xm(6,i+ 1Y'2);

Vt(i+ 1) =sqr-t(Xt(2,i+ I)A2+Xt(44i+ 1)A2+Xt(6,i+ 1)A2);

Vt..pitchi(i+l) = Vt(i+ 1)*cos(LAMBDA(2,j+ 1)-GAMMIA t(2,i+ 1));

\'tw..iLchN='%Im (i+l)*c-.s(LA17BDA( , i+1)-GMAM,.A_rn(2,i± I));

Vc...pitch(i+ 1) = Vm...pitch(i+ 1) *cos(GAMMA....( 1,i+ 1) )-LAMB DA(, 1 i+ 1))

-Vt...pitch(i+l)*cos(GANMM~t( I,i+ 1)-LANMDA( 1 ,i+ 1));

Vt...yaw(i+ 1) =Vt(i+i)*cos(GAMMAJt(l1,i+ 1));

Vm..yaw(i+ 1) = Vm(i+ I)*cos(GAMMIA...n~i(+1));

Vc-yaw(i+1) =Vm...yaw(i+ I)*cos(GAMMA M(2,i+1)-.LANMDA(2,i-i- ))
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-Vt_yaw(i-4 1 )*cos(GANWIAA t(2,i+ 1 )-LANMIDA(2,i+ 1));

Vc = [Vc-pitch(i+1) 0

0 Vc-yaw(i+l)];

% Time to go

Tgo(i+1) = R(4,i+l)/Vc~pitch(i+1);

% Calculate angles of the target's acceleration

TETA...t(i+ 1) = atan2(a~tz(i+1 ),sqrt(ajtx(i+l1)A2+a ty(i+ 1)A2));

PHI...t(i+ 1) = atan2(a...ty(i+ 1) ,a...tx(i4.1));

% Calculate the components of the target's acceleration normal to the LOS

a..t.pitch(i+ 1) =-a...t(i.4l1)*cos(LAMBDA(2,i+lI)-PHI-t(i+ 1))

*sjn(LAM4BDA(l1,i+ 1 )-TETAJt(i+ 1));

at..yaw(i+ 1) = aj(i+ 1)*cos(ThTA t(i+l1))*sin(LAMBDA(2,i+l1)-PHI t(i+ 1));

% Update optimal guidance coefficients

k =Tgo(i+ 1);

n =(6*kA2*(exp(-k)- 1+k))/(2*kA3+-3+6*k-6*kA2 1 2*k*exp(-k)-3*exp(-2*k));

N = n 0

o n1];

% Components of the Missile's acceleration normal to the pitch and yaw LOS

a~m...pitch(i+1) = Xgs(1,i+1);

anmvyaw(i.41) = Xgs(2,iq-1);

% Update guidance system input

Ugs(:,i+1) = N*(Vc*[Xsk(2,i+l);Xsk(4,i+l)]

.+,.5 *[* t itch'i+ I);a-P k -. -.y'aw(i+ 1)])

-( 1/kA2)*(exp(-k)+k-l1)* [a~iw~pitch(i+ l);a~m-yaw(i+ 1)]);

% Update Time

TIME(i+ 1) = TIME(i)-idt;

% Check for closest point

if (R(4,i) < R(4,i+1)),break,end
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end;

% Save information for plotting and evaluation

Rl(4*ti+l) = R(4,i); % miss distance

Ti(4*ti+1) = tV2;% starting dime of evasive maneuver (EM)

tgo(4*ti+l) = i*dt-ti/2; % time to go until end of flight

if ti == 12.0 % Record information for a target that

% initialized the evasive maneuver 6 sec after

% the missile entered into the terminal phase

TGO = tgo(49); % of flight

Xseeker = Xsk(:, l:i);

Xgsys = Xgs(:,1:i);

lambda_m = LAMBDA.m(:, 1:i);

lambdat = LAMBDA-t(:,1:i);

lambda = LANMBDA(:, 1:i);

gamma-m = GAMMA-m(:,I:i);

gamma.t = GAMMAJt(:,I:i);

r = R(:,1:i);

vm = Vm(l:i);

vt = Vt(l:i);

vm-pitch = Vm.pitch(l:i);

vt-pitch = Vt pitch(1 :i);
vmyaw = Vmyaw(1 :i);

vtyaw = Vt_yaw(i:i);

vc-pitch = Vc-pitch(l:i);

vc yaw = Vc yaw(l:i);

tGO = Tgo(i:i);

aM = amo(:, I.-i);

a_T = at(:,l :i);
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Ajt = a...t(l1:i);

A-m a..m(1:i);

time =TIIME(1:i);

end

clear R.

Xt(3, l)-Xni(3,l);

Xt(5, 1)-Xm-(5,1);

sqirt((Xt(1,1 l)-Xm(l 1,))A2+(Xt(3, 1)-Xm(3, 1 ))A2+(Xt(5, 1)-Xln(5, 1 ))A2)];

end;

save thesis3o343 R 1 tgo Ti tGO missile target TGO Xseeker Xgsys lambda-m

lambdajt lmbda gammna_m gpmmajt r vm vt vm~pich vm-yaw vt...pitch

vt..yaw vc...pitch vc-yaw a...M aT time A-t A._m

PLOTS

% Miss distance information

piot(Ti,R 1 ),title( 'MISS DISTANCE vs. INITIAL TIME, OPTIMAL')

xlabel('INMTAL TIME - SEC'),ylabel('MVISS - FEET')

!;rint --ips RlIao I

!pstoepsi Rlaol.ps Rlaol.epsi

pause,clg

plot(tgo,Rk l),title('MISS DISTANCE vs TIME TO GO, OPTIMAkL')

xlabel('TvIME TO GO - SEC'),ylabei('MI1ISS - FEET')

ow print -dps Ribol

!pstocpsi Rlbol.ps RiboLepsi

pause,clg

% Missile acceleration information

plot(time,A&m) ,title( 'MISS ILE ACCELERA.TION MAGNITUDE vs TIME,

OPTIMAL')
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xlabel( 'TIME - SEC '),ylabel( 'FEET/S ECA2')

print -dps A-mol

!pstoepsi A-mol.ps A..mol.epsi

pausexlg:

plot(time,Xgsys( 1,:)), title( 'MISS ILE PITCH ACCELERATION vs TIME,

OPTIMAL')

xlabel( TIME - SEC '),ylabel( 'FEET/S ECA2')

print -dps XgsyslolI

!pstoepsi Xgsys lol.ps Xgsysl101.epsi

pause,clg

plot(time,Xgsys(2,: )),title( 'MISSILE YAW ACCIELERATION vs TIME,

OPTIMAL')

xlabel( 'TIME - SEC*),ylabel( 'FEET/S ECA2')

print -dps Xgsys2olI

!pstoepsi Xgsys2ol.ps Xgsys2ol.epsi

pause,clg

% Target acceleration information

plot(time,Ajt),title('TARGET ACCELERATION MAGNITUDE vs TIME,

OPTIMAL')

xlabel('TYME - SEC'),ylabel('FEET/SECA2')

print -dps Ajtol

!pstoepsi A...tol.ps Ajtot.epsi

pause,clg

(Y Seeker pitch and yaw angles

plot(timne,Xseeke-( 1,: )),title(' S -EKER~ PITCH ANGLE vs TME, OPTrIMAL')

xlab3Il('TIMM - SEC'),ylabel('&7AD')

print -dps Xseeker Ilo 1

!pstoepsi Xseekerlol1.ps Xseeker 101 .eps-
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pause,clg

plot(timeXseeker(3,:)),title('SEEK-ER YAW ANIGLE vs TIME, OPTIMAL')

xlabel('TIME - SEC').ylabel('RAD') i

print -dps Xseeker2ol

!pstoepsi Xseeker2ol1.ps Xseeker2olI.epsi

pause,clg

plot(tirne.,Xseekcr(2.: )),title( 'SEEKER PITCH ANGLE RAT7E vs TIME,

OPTIMAL')

xlabel('TIME - SEC '),ylabel('RAD/SEC')

print -dps Xseeker3oi

!pstoepsi Xseeker3ol .ps Xseeker3ol .epsi

pause,clg

plot(timeXseeker(4,:)),title('SEEKER YAW ANGLE RATE vs TIME,

OPTIMAL')

xlabelQ'TIME - SEC ),ylabel('RAD/SEC')

print -dps Xseeker4olI

.pstoepsi Xseeker4ol .ps Xseeker4ol.epsi

prnuse,clg

%Range information

plot(time,r(4,:)),title('RANGE vs TIME, OPTIMAL')

xlabel(7'TIRM - SEC'),ylabel('FEET')

print -dps rol

.pstoepsi rol.ps rol~easi

pause,clg

T1o M~issile velocity information

plot(time,vm),title('MISSILE SPEED vs TIME, OPTIMAL')

xlabel('TIME - SEC'),ylabel('FEET/SEC')

print -dps vmolI
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!pstoepsi vmol.ps vmol.epsi

pause,clg

% Target velocity information

plot(time,vt),title('TARGET SPEED vs TIME, OPTIMLAL')

xlabel('TIME - SEC '),ylabel('FEET/SEC')

print -dps vto!

!pstoepsi vtol.ps vtol.epsi

pause,clg

% Closing velocity information

plot(time~vc-pitch),title( 'PITCH CLOS ING SPEED, OPTIMAL')

xlabel('TD4E - SEC ),ylabel( 'FEET/SEC')

print -dps vclol.

!pstoepsi vclol.ps vclol.epsi

pause,clg

plot(tim~e,vc~yaw),title('YAW CLOSING SPEED vs TIME, OPTIMAL')

xlabel( 'TIME - SEC '),ylabel( 'FEET/S EC')

print -dps vc2ol

.pstoepsi vc2ol.ps vc2ol.epsi

pause,clg
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